Color of whole-wheat foods prepared from a bright-white hard winter wheat and the phenolic acids in its coarse bran.J Food Sci. 2011 Aug; 76(6):C846-52.JF
The color of wheat kernels often impacts the color and thereby the value of wheat-based foods. A line of hard white winter wheat (B-W HW) with bright appearing kernels has been developed at the Kansas State Agricultural Research Center. The objective of this study was to compare the color of several foods made from the B-W HW wheat with those of 2 hard white wheat cultivars, Trego and Lakin. The B-W HW kernels showed higher lightness (L*, 57.6) than Trego (55.5) and Lakin (56.8), and the increased lightness was carried over to its bran and whole-wheat flour. Alkaline noodle and bread crumb made from the B-W HW whole-wheat flour showed slightly higher lightness (L*) than those made from Trego and Lakin. The sum of soluble and bound phenolics extracted from the 3 wheat brans, which had not been preextracted to remove lipids, was found to be 17.22 to 18.98 mg/g. The soluble phenolic acids in the brans were principally vanillic, ferulic, and syringic. The bound phenolic acids in the brans were dominated by ferulic, which accounted for 50.1% to 82.2% of total identified bound phenolic acids. Other bound phenolic acids were protocatechuic, caffeic, syringic, trans-cinnamic, p-hydroxybenzoic, p-coumaric, and vanillic. The lightness (L*) values of coarse wheat brans correlated positively with their levels of bound protocatechuic (r = 0.72, P < 0.01) and p-hydroxybenzoic acids (r = 0.75, P < 0.01).