Tags

Type your tag names separated by a space and hit enter

Adaptive radiation of multituberculate mammals before the extinction of dinosaurs.
Nature. 2012 Mar 14; 483(7390):457-60.Nat

Abstract

The Cretaceous-Paleogene mass extinction approximately 66 million years ago is conventionally thought to have been a turning point in mammalian evolution. Prior to that event and for the first two-thirds of their evolutionary history, mammals were mostly confined to roles as generalized, small-bodied, nocturnal insectivores, presumably under selection pressures from dinosaurs. Release from these pressures, by extinction of non-avian dinosaurs at the Cretaceous-Paleogene boundary, triggered ecological diversification of mammals. Although recent individual fossil discoveries have shown that some mammalian lineages diversified ecologically during the Mesozoic era, comprehensive ecological analyses of mammalian groups crossing the Cretaceous-Paleogene boundary are lacking. Such analyses are needed because diversification analyses of living taxa allow only indirect inferences of past ecosystems. Here we show that in arguably the most evolutionarily successful clade of Mesozoic mammals, the Multituberculata, an adaptive radiation began at least 20 million years before the extinction of non-avian dinosaurs and continued across the Cretaceous-Paleogene boundary. Disparity in dental complexity, which relates to the range of diets, rose sharply in step with generic richness and disparity in body size. Moreover, maximum dental complexity and body size demonstrate an adaptive shift towards increased herbivory. This dietary expansion tracked the ecological rise of angiosperms and suggests that the resources that were available to multituberculates were relatively unaffected by the Cretaceous-Paleogene mass extinction. Taken together, our results indicate that mammals were able to take advantage of new ecological opportunities in the Mesozoic and that at least some of these opportunities persisted through the Cretaceous-Paleogene mass extinction. Similar broad-scale ecomorphological inventories of other radiations may help to constrain the possible causes of mass extinctions.

Authors+Show Affiliations

Department of Biology, University of Washington, Seattle, Washington 98195-1800, USA. gpwilson@u.washington.eduNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Historical Article
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.

Language

eng

PubMed ID

22419156

Citation

Wilson, Gregory P., et al. "Adaptive Radiation of Multituberculate Mammals Before the Extinction of Dinosaurs." Nature, vol. 483, no. 7390, 2012, pp. 457-60.
Wilson GP, Evans AR, Corfe IJ, et al. Adaptive radiation of multituberculate mammals before the extinction of dinosaurs. Nature. 2012;483(7390):457-60.
Wilson, G. P., Evans, A. R., Corfe, I. J., Smits, P. D., Fortelius, M., & Jernvall, J. (2012). Adaptive radiation of multituberculate mammals before the extinction of dinosaurs. Nature, 483(7390), 457-60. https://doi.org/10.1038/nature10880
Wilson GP, et al. Adaptive Radiation of Multituberculate Mammals Before the Extinction of Dinosaurs. Nature. 2012 Mar 14;483(7390):457-60. PubMed PMID: 22419156.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Adaptive radiation of multituberculate mammals before the extinction of dinosaurs. AU - Wilson,Gregory P, AU - Evans,Alistair R, AU - Corfe,Ian J, AU - Smits,Peter D, AU - Fortelius,Mikael, AU - Jernvall,Jukka, Y1 - 2012/03/14/ PY - 2011/09/26/received PY - 2012/01/20/accepted PY - 2012/3/16/entrez PY - 2012/3/16/pubmed PY - 2012/4/20/medline SP - 457 EP - 60 JF - Nature JO - Nature VL - 483 IS - 7390 N2 - The Cretaceous-Paleogene mass extinction approximately 66 million years ago is conventionally thought to have been a turning point in mammalian evolution. Prior to that event and for the first two-thirds of their evolutionary history, mammals were mostly confined to roles as generalized, small-bodied, nocturnal insectivores, presumably under selection pressures from dinosaurs. Release from these pressures, by extinction of non-avian dinosaurs at the Cretaceous-Paleogene boundary, triggered ecological diversification of mammals. Although recent individual fossil discoveries have shown that some mammalian lineages diversified ecologically during the Mesozoic era, comprehensive ecological analyses of mammalian groups crossing the Cretaceous-Paleogene boundary are lacking. Such analyses are needed because diversification analyses of living taxa allow only indirect inferences of past ecosystems. Here we show that in arguably the most evolutionarily successful clade of Mesozoic mammals, the Multituberculata, an adaptive radiation began at least 20 million years before the extinction of non-avian dinosaurs and continued across the Cretaceous-Paleogene boundary. Disparity in dental complexity, which relates to the range of diets, rose sharply in step with generic richness and disparity in body size. Moreover, maximum dental complexity and body size demonstrate an adaptive shift towards increased herbivory. This dietary expansion tracked the ecological rise of angiosperms and suggests that the resources that were available to multituberculates were relatively unaffected by the Cretaceous-Paleogene mass extinction. Taken together, our results indicate that mammals were able to take advantage of new ecological opportunities in the Mesozoic and that at least some of these opportunities persisted through the Cretaceous-Paleogene mass extinction. Similar broad-scale ecomorphological inventories of other radiations may help to constrain the possible causes of mass extinctions. SN - 1476-4687 UR - https://www.unboundmedicine.com/medline/citation/22419156/Adaptive_radiation_of_multituberculate_mammals_before_the_extinction_of_dinosaurs_ L2 - https://doi.org/10.1038/nature10880 DB - PRIME DP - Unbound Medicine ER -