Tags

Type your tag names separated by a space and hit enter

A large increase in IAA during development of rice grains correlates with the expression of tryptophan aminotransferase OsTAR1 and a grain-specific YUCCA.
Physiol Plant. 2012 Dec; 146(4):487-99.PP

Abstract

The indole-3-acetic acid (IAA) content of developing grains of Oryza sativa subsp. japonica was measured by combined liquid chromatography, tandem mass spectrometry in multiple-reaction-monitoring mode. The increase from 50 ng g(-1) fresh weight to 2.9 µg g(-1) fresh weight from 1 to 14 days after pollination was much larger than that previously reported by enzyme-linked immunoassay methods. The largest increase in IAA content coincided with the start of the major starch deposition phase of grain-fill. The increase in IAA content was strongly correlated with the expression of putative IAA biosynthesis genes, OsYUC9, OsYUC11 and OsTAR1, measured by quantitative reverse transcriptase polymerase chain reaction. These results confirm the importance of the tryptophan aminotransferase/YUCCA pathway in this system. All three genes were expressed in endosperm; expression of OsYUC11 appeared to be confined to endosperm tissue. Phylogenetic analysis indicated that OsYUC11 and AtYUC10 belong to a separate clade of YUCCAs, which do not have orthologues outside the Angiosperms. This clade may have evolved with a specific role in endosperm. Expression of tryptophan decarboxylase in developing rice grains did not correlate with IAA levels, indicating that tryptamine is unlikely to be important for IAA synthesis in this system. In light of these observations, we hypothesize that IAA production in developing rice grains is controlled via expression of OsTAR1, OsYUC9, OsYUC11 and that IAA may be important during starch deposition in addition to its previously suggested role early in grain development.

Authors+Show Affiliations

Molecular and Cellular Biology, University of New England, Armidale, New South Wales, Australia.No affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article

Language

eng

PubMed ID

22582989

Citation

Abu-Zaitoon, Yousef M., et al. "A Large Increase in IAA During Development of Rice Grains Correlates With the Expression of Tryptophan Aminotransferase OsTAR1 and a Grain-specific YUCCA." Physiologia Plantarum, vol. 146, no. 4, 2012, pp. 487-99.
Abu-Zaitoon YM, Bennett K, Normanly J, et al. A large increase in IAA during development of rice grains correlates with the expression of tryptophan aminotransferase OsTAR1 and a grain-specific YUCCA. Physiol Plant. 2012;146(4):487-99.
Abu-Zaitoon, Y. M., Bennett, K., Normanly, J., & Nonhebel, H. M. (2012). A large increase in IAA during development of rice grains correlates with the expression of tryptophan aminotransferase OsTAR1 and a grain-specific YUCCA. Physiologia Plantarum, 146(4), 487-99. https://doi.org/10.1111/j.1399-3054.2012.01649.x
Abu-Zaitoon YM, et al. A Large Increase in IAA During Development of Rice Grains Correlates With the Expression of Tryptophan Aminotransferase OsTAR1 and a Grain-specific YUCCA. Physiol Plant. 2012;146(4):487-99. PubMed PMID: 22582989.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - A large increase in IAA during development of rice grains correlates with the expression of tryptophan aminotransferase OsTAR1 and a grain-specific YUCCA. AU - Abu-Zaitoon,Yousef M, AU - Bennett,Karina, AU - Normanly,Jennifer, AU - Nonhebel,Heather M, Y1 - 2012/06/23/ PY - 2012/5/16/entrez PY - 2012/5/16/pubmed PY - 2013/4/9/medline SP - 487 EP - 99 JF - Physiologia plantarum JO - Physiol Plant VL - 146 IS - 4 N2 - The indole-3-acetic acid (IAA) content of developing grains of Oryza sativa subsp. japonica was measured by combined liquid chromatography, tandem mass spectrometry in multiple-reaction-monitoring mode. The increase from 50 ng g(-1) fresh weight to 2.9 µg g(-1) fresh weight from 1 to 14 days after pollination was much larger than that previously reported by enzyme-linked immunoassay methods. The largest increase in IAA content coincided with the start of the major starch deposition phase of grain-fill. The increase in IAA content was strongly correlated with the expression of putative IAA biosynthesis genes, OsYUC9, OsYUC11 and OsTAR1, measured by quantitative reverse transcriptase polymerase chain reaction. These results confirm the importance of the tryptophan aminotransferase/YUCCA pathway in this system. All three genes were expressed in endosperm; expression of OsYUC11 appeared to be confined to endosperm tissue. Phylogenetic analysis indicated that OsYUC11 and AtYUC10 belong to a separate clade of YUCCAs, which do not have orthologues outside the Angiosperms. This clade may have evolved with a specific role in endosperm. Expression of tryptophan decarboxylase in developing rice grains did not correlate with IAA levels, indicating that tryptamine is unlikely to be important for IAA synthesis in this system. In light of these observations, we hypothesize that IAA production in developing rice grains is controlled via expression of OsTAR1, OsYUC9, OsYUC11 and that IAA may be important during starch deposition in addition to its previously suggested role early in grain development. SN - 1399-3054 UR - https://www.unboundmedicine.com/medline/citation/22582989/A_large_increase_in_IAA_during_development_of_rice_grains_correlates_with_the_expression_of_tryptophan_aminotransferase_OsTAR1_and_a_grain_specific_YUCCA_ DB - PRIME DP - Unbound Medicine ER -