Tags

Type your tag names separated by a space and hit enter

Analysis of intermittency in under-resolved smoothed-particle-hydrodynamics direct numerical simulations of forced compressible turbulence.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Mar; 85(3 Pt 2):036708.PR

Abstract

We perform three-dimensional under-resolved direct numerical simulations of forced compressible turbulence using the smoothed particle hydrodynamics (SPH) method and investigate the Lagrangian intermittency of the resulting hydrodynamic fields. The analysis presented here is motivated by the presence of typical stretched tails in the probability density function (PDF) of the particle accelerations previously observed in two-dimensional SPH simulations of uniform shear flow [Ellero et al., Phys. Rev. E 82, 046702 (2010)]. In order to produce a stationary isotropic compressible turbulent state, the real-space stochastic forcing method proposed by Kida and Orszag is applied, and the statistics of particle quantities are evaluated. We validate our scheme by checking the behavior of the energy spectrum in the supersonic case where the expected Burgers-like scaling is obtained. By discretizing the continuum equations along fluid particle trajectories, the SPH method allows us to extract Lagrangian statistics in a straightforward fashion without the need for extra tracer particles. In particular, Lagrangian PDF of the density, particle accelerations as well as their Lagrangian structure functions and local scaling exponents are analyzed. The results for low-order statistics of Lagrangian intermittency in compressible turbulence demonstrate the implicit subparticle-scale modeling of the SPH discretization scheme.

Authors+Show Affiliations

Lehrstuhl für Aerodynamik und Strömungsmechanik, Technische Universität München, Boltzmannstr. 15, 85748 Garching, Germany. yilei.shi@aer.mw.tum.deNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

22587210

Citation

Shi, Yilei, et al. "Analysis of Intermittency in Under-resolved Smoothed-particle-hydrodynamics Direct Numerical Simulations of Forced Compressible Turbulence." Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, vol. 85, no. 3 Pt 2, 2012, p. 036708.
Shi Y, Ellero M, Adams NA. Analysis of intermittency in under-resolved smoothed-particle-hydrodynamics direct numerical simulations of forced compressible turbulence. Phys Rev E Stat Nonlin Soft Matter Phys. 2012;85(3 Pt 2):036708.
Shi, Y., Ellero, M., & Adams, N. A. (2012). Analysis of intermittency in under-resolved smoothed-particle-hydrodynamics direct numerical simulations of forced compressible turbulence. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 85(3 Pt 2), 036708.
Shi Y, Ellero M, Adams NA. Analysis of Intermittency in Under-resolved Smoothed-particle-hydrodynamics Direct Numerical Simulations of Forced Compressible Turbulence. Phys Rev E Stat Nonlin Soft Matter Phys. 2012;85(3 Pt 2):036708. PubMed PMID: 22587210.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Analysis of intermittency in under-resolved smoothed-particle-hydrodynamics direct numerical simulations of forced compressible turbulence. AU - Shi,Yilei, AU - Ellero,Marco, AU - Adams,Nikolaus A, Y1 - 2012/03/22/ PY - 2011/11/03/received PY - 2012/5/17/entrez PY - 2012/5/17/pubmed PY - 2012/5/17/medline SP - 036708 EP - 036708 JF - Physical review. E, Statistical, nonlinear, and soft matter physics JO - Phys Rev E Stat Nonlin Soft Matter Phys VL - 85 IS - 3 Pt 2 N2 - We perform three-dimensional under-resolved direct numerical simulations of forced compressible turbulence using the smoothed particle hydrodynamics (SPH) method and investigate the Lagrangian intermittency of the resulting hydrodynamic fields. The analysis presented here is motivated by the presence of typical stretched tails in the probability density function (PDF) of the particle accelerations previously observed in two-dimensional SPH simulations of uniform shear flow [Ellero et al., Phys. Rev. E 82, 046702 (2010)]. In order to produce a stationary isotropic compressible turbulent state, the real-space stochastic forcing method proposed by Kida and Orszag is applied, and the statistics of particle quantities are evaluated. We validate our scheme by checking the behavior of the energy spectrum in the supersonic case where the expected Burgers-like scaling is obtained. By discretizing the continuum equations along fluid particle trajectories, the SPH method allows us to extract Lagrangian statistics in a straightforward fashion without the need for extra tracer particles. In particular, Lagrangian PDF of the density, particle accelerations as well as their Lagrangian structure functions and local scaling exponents are analyzed. The results for low-order statistics of Lagrangian intermittency in compressible turbulence demonstrate the implicit subparticle-scale modeling of the SPH discretization scheme. SN - 1550-2376 UR - https://www.unboundmedicine.com/medline/citation/22587210/Analysis_of_intermittency_in_under_resolved_smoothed_particle_hydrodynamics_direct_numerical_simulations_of_forced_compressible_turbulence_ DB - PRIME DP - Unbound Medicine ER -
Try the Free App:
Prime PubMed app for iOS iPhone iPad
Prime PubMed app for Android
Prime PubMed is provided
free to individuals by:
Unbound Medicine.