Tags

Type your tag names separated by a space and hit enter

CYP1A2 and coffee intake and the modifying effect of sex, age, and smoking.
Am J Clin Nutr 2012; 96(1):182-7AJ

Abstract

BACKGROUND

The enzyme CYP1A2 (cytochrome 1A2) is involved in the metabolism of certain drugs and caffeine, and its activity can be influenced by factors such as sex, age, and smoking. The single nucleotide polymorphism (SNP) rs762551A>C, which has also been studied for its modifying effect on cardiovascular disease, has been reported to alter enzyme activity.

OBJECTIVE

The objective was to study the effect of CYP1A2, sex, age, and smoking on coffee intake.

DESIGN

Within the Rotterdam Study, a population-based cohort, all coffee drinkers for whom genome-wide association data were available were selected. Because SNP rs762551 was not on the Illumina 550 platform, SNP rs2472299 was used as a proxy, with the A allele of rs762551 linked to the G allele of rs2472299. Linear regression analyses were used to determine the effect and interaction of rs2472299, sex, age, and smoking on coffee intake. Adjusted geometric means of coffee intake were calculated per genotype for the different smoking and sex strata by using multivariable general linear models. A combined analysis, with the use of a "risk score," was performed to determine the contribution of each separate factor.

RESULTS

rs2472299G>A, female sex, and nonsmoking were significantly inversely related to coffee intake. Coffee intake was lowest in nonsmoking women homozygous for rs2472299G>A (3.49 cups/d; ∼436 mL). All factors contributed almost linearly to the intake of coffee, with the highest coffee intake in smoking men without the A allele (5.32 cups/d; ∼665 mL).

CONCLUSION

rs2472299G>A, linked to rs762551A>C, sex, age, and smoking significantly contribute to coffee intake.

Authors+Show Affiliations

Department of Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands. e.rodenburg@erasmusmc.nlNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article

Language

eng

PubMed ID

22648710

Citation

Rodenburg, Eline M., et al. "CYP1A2 and Coffee Intake and the Modifying Effect of Sex, Age, and Smoking." The American Journal of Clinical Nutrition, vol. 96, no. 1, 2012, pp. 182-7.
Rodenburg EM, Eijgelsheim M, Geleijnse JM, et al. CYP1A2 and coffee intake and the modifying effect of sex, age, and smoking. Am J Clin Nutr. 2012;96(1):182-7.
Rodenburg, E. M., Eijgelsheim, M., Geleijnse, J. M., Amin, N., van Duijn, C. M., Hofman, A., ... Visser, L. E. (2012). CYP1A2 and coffee intake and the modifying effect of sex, age, and smoking. The American Journal of Clinical Nutrition, 96(1), pp. 182-7. doi:10.3945/ajcn.111.027102.
Rodenburg EM, et al. CYP1A2 and Coffee Intake and the Modifying Effect of Sex, Age, and Smoking. Am J Clin Nutr. 2012;96(1):182-7. PubMed PMID: 22648710.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - CYP1A2 and coffee intake and the modifying effect of sex, age, and smoking. AU - Rodenburg,Eline M, AU - Eijgelsheim,Mark, AU - Geleijnse,Johanna M, AU - Amin,Najaf, AU - van Duijn,Cornelia M, AU - Hofman,Albert, AU - Uitterlinden,Andre G, AU - Stricker,Bruno H, AU - Visser,Loes E, Y1 - 2012/05/30/ PY - 2012/6/1/entrez PY - 2012/6/1/pubmed PY - 2012/9/8/medline SP - 182 EP - 7 JF - The American journal of clinical nutrition JO - Am. J. Clin. Nutr. VL - 96 IS - 1 N2 - BACKGROUND: The enzyme CYP1A2 (cytochrome 1A2) is involved in the metabolism of certain drugs and caffeine, and its activity can be influenced by factors such as sex, age, and smoking. The single nucleotide polymorphism (SNP) rs762551A>C, which has also been studied for its modifying effect on cardiovascular disease, has been reported to alter enzyme activity. OBJECTIVE: The objective was to study the effect of CYP1A2, sex, age, and smoking on coffee intake. DESIGN: Within the Rotterdam Study, a population-based cohort, all coffee drinkers for whom genome-wide association data were available were selected. Because SNP rs762551 was not on the Illumina 550 platform, SNP rs2472299 was used as a proxy, with the A allele of rs762551 linked to the G allele of rs2472299. Linear regression analyses were used to determine the effect and interaction of rs2472299, sex, age, and smoking on coffee intake. Adjusted geometric means of coffee intake were calculated per genotype for the different smoking and sex strata by using multivariable general linear models. A combined analysis, with the use of a "risk score," was performed to determine the contribution of each separate factor. RESULTS: rs2472299G>A, female sex, and nonsmoking were significantly inversely related to coffee intake. Coffee intake was lowest in nonsmoking women homozygous for rs2472299G>A (3.49 cups/d; ∼436 mL). All factors contributed almost linearly to the intake of coffee, with the highest coffee intake in smoking men without the A allele (5.32 cups/d; ∼665 mL). CONCLUSION: rs2472299G>A, linked to rs762551A>C, sex, age, and smoking significantly contribute to coffee intake. SN - 1938-3207 UR - https://www.unboundmedicine.com/medline/citation/22648710/CYP1A2_and_coffee_intake_and_the_modifying_effect_of_sex_age_and_smoking_ L2 - https://academic.oup.com/ajcn/article-lookup/doi/10.3945/ajcn.111.027102 DB - PRIME DP - Unbound Medicine ER -