Tags

Type your tag names separated by a space and hit enter

Speeding up the solar water disinfection process (SODIS) against Cryptosporidium parvum by using 2.5l static solar reactors fitted with compound parabolic concentrators (CPCs).
Acta Trop. 2012 Dec; 124(3):235-42.AT

Abstract

Water samples of 0, 5, and 100 nephelometric turbidity units (NTU) spiked with Cryptosporidium parvum oocysts were exposed to natural sunlight in 2.5l static borosilicate solar reactors fitted with two different compound parabolic concentrators (CPCs), CPC1 and CPC1.89, with concentration factors of the solar radiation of 1 and 1.89, respectively. The global oocyst viability was calculated by the evaluation of the inclusion/exclusion of the fluorogenic vital dye propidium iodide and the spontaneous excystation. Thus, the initial global oocyst viability of the C. parvum isolate used was 95.3 ± 1.6%. Using the solar reactors fitted with CPC1, the global viability of oocysts after 12h of exposure was zero in the most turbid water samples (100 NTU) and almost zero in the other water samples (0.3 ± 0.0% for 0 NTU and 0.5 ± 0.2% for 5 NTU). Employing the solar reactors fitted with CPC1.89, after 10h exposure, the global oocyst viability was zero in the non-turbid water samples (0 NTU), and it was almost zero in the 5 NTU water samples after 8h of exposure (0.5 ± 0.5%). In the most turbid water samples (100 NTU), the global viability was 1.9 ± 0.6% after 10 and 12h of exposure. In conclusion, the use of these 2.5l static solar reactors fitted with CPCs significantly improved the efficacy of the SODIS technique as these systems shorten the exposure times to solar radiation, and also minimize the negative effects of turbidity. This technology therefore represents a good alternative method for improving the microbiological quality of household drinking water in developing countries.

Authors+Show Affiliations

Laboratorio de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Farmacia, Campus Vida, Universidad de Santiago de Compostela, A Coruña, Spain. hipolito.gomez@usc.esNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

22944729

Citation

Gómez-Couso, H, et al. "Speeding Up the Solar Water Disinfection Process (SODIS) Against Cryptosporidium Parvum By Using 2.5l Static Solar Reactors Fitted With Compound Parabolic Concentrators (CPCs)." Acta Tropica, vol. 124, no. 3, 2012, pp. 235-42.
Gómez-Couso H, Fontán-Sainz M, Fernández-Ibáñez P, et al. Speeding up the solar water disinfection process (SODIS) against Cryptosporidium parvum by using 2.5l static solar reactors fitted with compound parabolic concentrators (CPCs). Acta Trop. 2012;124(3):235-42.
Gómez-Couso, H., Fontán-Sainz, M., Fernández-Ibáñez, P., & Ares-Mazás, E. (2012). Speeding up the solar water disinfection process (SODIS) against Cryptosporidium parvum by using 2.5l static solar reactors fitted with compound parabolic concentrators (CPCs). Acta Tropica, 124(3), 235-42. https://doi.org/10.1016/j.actatropica.2012.08.018
Gómez-Couso H, et al. Speeding Up the Solar Water Disinfection Process (SODIS) Against Cryptosporidium Parvum By Using 2.5l Static Solar Reactors Fitted With Compound Parabolic Concentrators (CPCs). Acta Trop. 2012;124(3):235-42. PubMed PMID: 22944729.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Speeding up the solar water disinfection process (SODIS) against Cryptosporidium parvum by using 2.5l static solar reactors fitted with compound parabolic concentrators (CPCs). AU - Gómez-Couso,H, AU - Fontán-Sainz,M, AU - Fernández-Ibáñez,P, AU - Ares-Mazás,E, Y1 - 2012/09/01/ PY - 2012/05/16/received PY - 2012/08/11/revised PY - 2012/08/24/accepted PY - 2012/9/5/entrez PY - 2012/9/5/pubmed PY - 2013/2/23/medline SP - 235 EP - 42 JF - Acta tropica JO - Acta Trop VL - 124 IS - 3 N2 - Water samples of 0, 5, and 100 nephelometric turbidity units (NTU) spiked with Cryptosporidium parvum oocysts were exposed to natural sunlight in 2.5l static borosilicate solar reactors fitted with two different compound parabolic concentrators (CPCs), CPC1 and CPC1.89, with concentration factors of the solar radiation of 1 and 1.89, respectively. The global oocyst viability was calculated by the evaluation of the inclusion/exclusion of the fluorogenic vital dye propidium iodide and the spontaneous excystation. Thus, the initial global oocyst viability of the C. parvum isolate used was 95.3 ± 1.6%. Using the solar reactors fitted with CPC1, the global viability of oocysts after 12h of exposure was zero in the most turbid water samples (100 NTU) and almost zero in the other water samples (0.3 ± 0.0% for 0 NTU and 0.5 ± 0.2% for 5 NTU). Employing the solar reactors fitted with CPC1.89, after 10h exposure, the global oocyst viability was zero in the non-turbid water samples (0 NTU), and it was almost zero in the 5 NTU water samples after 8h of exposure (0.5 ± 0.5%). In the most turbid water samples (100 NTU), the global viability was 1.9 ± 0.6% after 10 and 12h of exposure. In conclusion, the use of these 2.5l static solar reactors fitted with CPCs significantly improved the efficacy of the SODIS technique as these systems shorten the exposure times to solar radiation, and also minimize the negative effects of turbidity. This technology therefore represents a good alternative method for improving the microbiological quality of household drinking water in developing countries. SN - 1873-6254 UR - https://www.unboundmedicine.com/medline/citation/22944729/Speeding_up_the_solar_water_disinfection_process__SODIS__against_Cryptosporidium_parvum_by_using_2_5l_static_solar_reactors_fitted_with_compound_parabolic_concentrators__CPCs__ L2 - https://linkinghub.elsevier.com/retrieve/pii/S0001-706X(12)00303-8 DB - PRIME DP - Unbound Medicine ER -