Tags

Type your tag names separated by a space and hit enter

Simultaneous transfer, introgression, and genomic localization of genes for resistance to stem rust race TTKSK (Ug99) from Aegilops tauschii to wheat.
Theor Appl Genet. 2013 May; 126(5):1179-88.TA

Abstract

Wheat production is currently threatened by widely virulent races of the wheat stem rust fungus, Puccinia graminis f. sp. tritici, that are part of the TTKSK (also known as 'Ug99') race group. The diploid D genome donor species Aegilops tauschii (2n = 2x = 14, DD) is a readily accessible source of resistance to TTKSK and its derivatives that can be transferred to hexaploid wheat, Triticum aestivum (2n = 6x = 42, AABBDD). To expedite transfer of TTKSK resistance from Ae. tauschii, a direct hybridization approach was undertaken that integrates gene transfer, mapping, and introgression into one process. Direct crossing of Ae. tauschii accessions with an elite wheat breeding line combines the steps of gene transfer and introgression while development of mapping populations during gene transfer enables the identification of closely linked markers. Direct crosses were made using TTKSK-resistant Ae. tauschii accessions TA1662 and PI 603225 as males and a stem rust-susceptible T. aestivum breeding line, KS05HW14, as a female. Embryo rescue enabled recovery of F1 (ABDD) plants that were backcrossed as females to the hexaploid recurrent parent. Stem rust-resistant BC1F1 plants from each Ae. tauschii donor source were used as males to generate BC2F1 mapping populations. Bulked segregant analysis of BC2F1 genotypes was performed using 70 SSR loci distributed across the D genome. Using this approach, stem rust resistance genes from both accessions were located on chromosome arm 1DS and mapped using SSR and EST-STS markers. An allelism test indicated the stem rust resistance gene transferred from PI 603225 is Sr33. Race specificity suggests the stem rust resistance gene transferred from TA1662 is unique and this gene has been temporarily designated SrTA1662. Stem rust resistance genes derived from TA1662 and PI 603225 have been made available with selectable molecular markers in genetic backgrounds suitable for stem rust resistance breeding.

Authors+Show Affiliations

Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA.No affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.

Language

eng

PubMed ID

23377571

Citation

Olson, Eric L., et al. "Simultaneous Transfer, Introgression, and Genomic Localization of Genes for Resistance to Stem Rust Race TTKSK (Ug99) From Aegilops Tauschii to Wheat." TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik, vol. 126, no. 5, 2013, pp. 1179-88.
Olson EL, Rouse MN, Pumphrey MO, et al. Simultaneous transfer, introgression, and genomic localization of genes for resistance to stem rust race TTKSK (Ug99) from Aegilops tauschii to wheat. Theor Appl Genet. 2013;126(5):1179-88.
Olson, E. L., Rouse, M. N., Pumphrey, M. O., Bowden, R. L., Gill, B. S., & Poland, J. A. (2013). Simultaneous transfer, introgression, and genomic localization of genes for resistance to stem rust race TTKSK (Ug99) from Aegilops tauschii to wheat. TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik, 126(5), 1179-88. https://doi.org/10.1007/s00122-013-2045-5
Olson EL, et al. Simultaneous Transfer, Introgression, and Genomic Localization of Genes for Resistance to Stem Rust Race TTKSK (Ug99) From Aegilops Tauschii to Wheat. Theor Appl Genet. 2013;126(5):1179-88. PubMed PMID: 23377571.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Simultaneous transfer, introgression, and genomic localization of genes for resistance to stem rust race TTKSK (Ug99) from Aegilops tauschii to wheat. AU - Olson,Eric L, AU - Rouse,Matthew N, AU - Pumphrey,Michael O, AU - Bowden,Robert L, AU - Gill,Bikram S, AU - Poland,Jesse A, Y1 - 2013/02/03/ PY - 2012/09/25/received PY - 2013/01/09/accepted PY - 2013/2/5/entrez PY - 2013/2/5/pubmed PY - 2013/10/30/medline SP - 1179 EP - 88 JF - TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik JO - Theor Appl Genet VL - 126 IS - 5 N2 - Wheat production is currently threatened by widely virulent races of the wheat stem rust fungus, Puccinia graminis f. sp. tritici, that are part of the TTKSK (also known as 'Ug99') race group. The diploid D genome donor species Aegilops tauschii (2n = 2x = 14, DD) is a readily accessible source of resistance to TTKSK and its derivatives that can be transferred to hexaploid wheat, Triticum aestivum (2n = 6x = 42, AABBDD). To expedite transfer of TTKSK resistance from Ae. tauschii, a direct hybridization approach was undertaken that integrates gene transfer, mapping, and introgression into one process. Direct crossing of Ae. tauschii accessions with an elite wheat breeding line combines the steps of gene transfer and introgression while development of mapping populations during gene transfer enables the identification of closely linked markers. Direct crosses were made using TTKSK-resistant Ae. tauschii accessions TA1662 and PI 603225 as males and a stem rust-susceptible T. aestivum breeding line, KS05HW14, as a female. Embryo rescue enabled recovery of F1 (ABDD) plants that were backcrossed as females to the hexaploid recurrent parent. Stem rust-resistant BC1F1 plants from each Ae. tauschii donor source were used as males to generate BC2F1 mapping populations. Bulked segregant analysis of BC2F1 genotypes was performed using 70 SSR loci distributed across the D genome. Using this approach, stem rust resistance genes from both accessions were located on chromosome arm 1DS and mapped using SSR and EST-STS markers. An allelism test indicated the stem rust resistance gene transferred from PI 603225 is Sr33. Race specificity suggests the stem rust resistance gene transferred from TA1662 is unique and this gene has been temporarily designated SrTA1662. Stem rust resistance genes derived from TA1662 and PI 603225 have been made available with selectable molecular markers in genetic backgrounds suitable for stem rust resistance breeding. SN - 1432-2242 UR - https://www.unboundmedicine.com/medline/citation/23377571/Simultaneous_transfer_introgression_and_genomic_localization_of_genes_for_resistance_to_stem_rust_race_TTKSK__Ug99__from_Aegilops_tauschii_to_wheat_ L2 - https://dx.doi.org/10.1007/s00122-013-2045-5 DB - PRIME DP - Unbound Medicine ER -