Tags

Type your tag names separated by a space and hit enter

Application of stochastic models in identification and apportionment of heavy metal pollution sources in the surface soils of a large-scale region.
Environ Sci Technol. 2013 Apr 16; 47(8):3752-60.ES

Abstract

As heavy metals occur naturally in soils at measurable concentrations and their natural background contents have significant spatial variations, identification and apportionment of heavy metal pollution sources across large-scale regions is a challenging task. Stochastic models, including the recently developed conditional inference tree (CIT) and the finite mixture distribution model (FMDM), were applied to identify the sources of heavy metals found in the surface soils of the Pearl River Delta, China, and to apportion the contributions from natural background and human activities. Regression trees were successfully developed for the concentrations of Cd, Cu, Zn, Pb, Cr, Ni, As, and Hg in 227 soil samples from a region of over 7.2 × 10(4) km(2) based on seven specific predictors relevant to the source and behavior of heavy metals: land use, soil type, soil organic carbon content, population density, gross domestic product per capita, and the lengths and classes of the roads surrounding the sampling sites. The CIT and FMDM results consistently indicate that Cd, Zn, Cu, Pb, and Cr in the surface soils of the PRD were contributed largely by anthropogenic sources, whereas As, Ni, and Hg in the surface soils mostly originated from the soil parent materials.

Authors+Show Affiliations

State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.No affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

23496004

Citation

Hu, Yuanan, and Hefa Cheng. "Application of Stochastic Models in Identification and Apportionment of Heavy Metal Pollution Sources in the Surface Soils of a Large-scale Region." Environmental Science & Technology, vol. 47, no. 8, 2013, pp. 3752-60.
Hu Y, Cheng H. Application of stochastic models in identification and apportionment of heavy metal pollution sources in the surface soils of a large-scale region. Environ Sci Technol. 2013;47(8):3752-60.
Hu, Y., & Cheng, H. (2013). Application of stochastic models in identification and apportionment of heavy metal pollution sources in the surface soils of a large-scale region. Environmental Science & Technology, 47(8), 3752-60. https://doi.org/10.1021/es304310k
Hu Y, Cheng H. Application of Stochastic Models in Identification and Apportionment of Heavy Metal Pollution Sources in the Surface Soils of a Large-scale Region. Environ Sci Technol. 2013 Apr 16;47(8):3752-60. PubMed PMID: 23496004.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Application of stochastic models in identification and apportionment of heavy metal pollution sources in the surface soils of a large-scale region. AU - Hu,Yuanan, AU - Cheng,Hefa, Y1 - 2013/04/01/ PY - 2013/3/19/entrez PY - 2013/3/19/pubmed PY - 2014/3/26/medline SP - 3752 EP - 60 JF - Environmental science & technology JO - Environ Sci Technol VL - 47 IS - 8 N2 - As heavy metals occur naturally in soils at measurable concentrations and their natural background contents have significant spatial variations, identification and apportionment of heavy metal pollution sources across large-scale regions is a challenging task. Stochastic models, including the recently developed conditional inference tree (CIT) and the finite mixture distribution model (FMDM), were applied to identify the sources of heavy metals found in the surface soils of the Pearl River Delta, China, and to apportion the contributions from natural background and human activities. Regression trees were successfully developed for the concentrations of Cd, Cu, Zn, Pb, Cr, Ni, As, and Hg in 227 soil samples from a region of over 7.2 × 10(4) km(2) based on seven specific predictors relevant to the source and behavior of heavy metals: land use, soil type, soil organic carbon content, population density, gross domestic product per capita, and the lengths and classes of the roads surrounding the sampling sites. The CIT and FMDM results consistently indicate that Cd, Zn, Cu, Pb, and Cr in the surface soils of the PRD were contributed largely by anthropogenic sources, whereas As, Ni, and Hg in the surface soils mostly originated from the soil parent materials. SN - 1520-5851 UR - https://www.unboundmedicine.com/medline/citation/23496004/Application_of_stochastic_models_in_identification_and_apportionment_of_heavy_metal_pollution_sources_in_the_surface_soils_of_a_large_scale_region_ L2 - https://doi.org/10.1021/es304310k DB - PRIME DP - Unbound Medicine ER -