Tags

Type your tag names separated by a space and hit enter

In vitro mineralization of hydroxyapatite on electrospun poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) fibrous scaffolds for tissue engineering application.

Abstract

In this study, a fibrous scaffold was prepared by electrospinning triblock PCL-PEG-PCL (PCEC) copolymer. Afterwards, in vitro biomimetic mineralization was carried out through incubation of the PCEC fibrous mats in a simulated body fluid (SBF) for different time. The apatite-deposited PCEC composite scaffolds were characterized by using Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscope (SEM) observation and weighing. Due to the importance of biocompatibility, rat ROS 17/2.8 osteoblasts were cultured on mineralized PCEC scaffolds, and the cell proliferation was investigated by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assays. The obtained results confirmed that the deposited apatite had the chemical composition and crystalline phase similar to those of hydroxyapatite (HA). After 21 days incubation, the mass increase of PCEC scaffold reached up to 22%. Moreover, in vitro cell culture also confirmed that osteoblasts could attach on the mineralized composite scaffolds, and the HA-deposited PCEC mats had less cytotoxicity. So, the mineralized PCEC composite scaffolds had a great potential for tissue engineering application.

Authors+Show Affiliations

Department of Oncology, The Affiliated Hospital of Luzhou Medical College, Luzhou 646000, PR China. shaozhifu513@163.comNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

23500727

Citation

Fu, ShaoZhi, et al. "In Vitro Mineralization of Hydroxyapatite On Electrospun Poly(ε-caprolactone)-poly(ethylene Glycol)-poly(ε-caprolactone) Fibrous Scaffolds for Tissue Engineering Application." Colloids and Surfaces. B, Biointerfaces, vol. 107, 2013, pp. 167-73.
Fu S, Yang L, Fan J, et al. In vitro mineralization of hydroxyapatite on electrospun poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) fibrous scaffolds for tissue engineering application. Colloids Surf B Biointerfaces. 2013;107:167-73.
Fu, S., Yang, L., Fan, J., Wen, Q., Lin, S., Wang, B., ... Wu, J. (2013). In vitro mineralization of hydroxyapatite on electrospun poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) fibrous scaffolds for tissue engineering application. Colloids and Surfaces. B, Biointerfaces, 107, pp. 167-73. doi:10.1016/j.colsurfb.2013.01.068.
Fu S, et al. In Vitro Mineralization of Hydroxyapatite On Electrospun Poly(ε-caprolactone)-poly(ethylene Glycol)-poly(ε-caprolactone) Fibrous Scaffolds for Tissue Engineering Application. Colloids Surf B Biointerfaces. 2013 Jul 1;107:167-73. PubMed PMID: 23500727.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - In vitro mineralization of hydroxyapatite on electrospun poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) fibrous scaffolds for tissue engineering application. AU - Fu,ShaoZhi, AU - Yang,LingLin, AU - Fan,Juan, AU - Wen,QingLian, AU - Lin,Sheng, AU - Wang,BiQiong, AU - Chen,LanLan, AU - Meng,XiaoHang, AU - Chen,Yue, AU - Wu,JingBo, Y1 - 2013/02/09/ PY - 2012/12/28/received PY - 2013/01/30/revised PY - 2013/01/31/accepted PY - 2013/3/19/entrez PY - 2013/3/19/pubmed PY - 2013/10/18/medline SP - 167 EP - 73 JF - Colloids and surfaces. B, Biointerfaces JO - Colloids Surf B Biointerfaces VL - 107 N2 - In this study, a fibrous scaffold was prepared by electrospinning triblock PCL-PEG-PCL (PCEC) copolymer. Afterwards, in vitro biomimetic mineralization was carried out through incubation of the PCEC fibrous mats in a simulated body fluid (SBF) for different time. The apatite-deposited PCEC composite scaffolds were characterized by using Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscope (SEM) observation and weighing. Due to the importance of biocompatibility, rat ROS 17/2.8 osteoblasts were cultured on mineralized PCEC scaffolds, and the cell proliferation was investigated by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assays. The obtained results confirmed that the deposited apatite had the chemical composition and crystalline phase similar to those of hydroxyapatite (HA). After 21 days incubation, the mass increase of PCEC scaffold reached up to 22%. Moreover, in vitro cell culture also confirmed that osteoblasts could attach on the mineralized composite scaffolds, and the HA-deposited PCEC mats had less cytotoxicity. So, the mineralized PCEC composite scaffolds had a great potential for tissue engineering application. SN - 1873-4367 UR - https://www.unboundmedicine.com/medline/citation/23500727/In_vitro_mineralization_of_hydroxyapatite_on_electrospun_poly_ε_caprolactone__poly_ethylene_glycol__poly_ε_caprolactone__fibrous_scaffolds_for_tissue_engineering_application_ L2 - https://linkinghub.elsevier.com/retrieve/pii/S0927-7765(13)00090-8 DB - PRIME DP - Unbound Medicine ER -