Tags

Type your tag names separated by a space and hit enter

Silencing abnormal wing disc gene of the Asian citrus psyllid, Diaphorina citri disrupts adult wing development and increases nymph mortality.
PLoS One. 2013; 8(5):e65392.Plos

Abstract

Huanglongbing (HLB) causes considerable economic losses to citrus industries worldwide. Its management depends on controlling of the Asian citrus Psyllid (ACP), the vector of the bacterium, Candidatus Liberibacter asiaticus (CLas), the causal agent of HLB. Silencing genes by RNA interference (RNAi) is a promising tool to explore gene functions as well as control pests. In the current study, abnormal wing disc (awd) gene associated with wing development in insects is used to interfere with the flight of psyllids. Our study showed that transcription of awd is development-dependent and the highest level was found in the last instar (5(th)) of the nymphal stage. Micro-application (topical application) of dsRNA to 5(th) instar of nymphs caused significant nymphal mortality and adult wing-malformation. These adverse effects in ACP were positively correlated with the amounts of dsRNA used. A qRT-PCR analysis confirmed the dsRNA-mediated transcriptional down-regulation of the awd gene. Significant down-regulation was required to induce a wing-malformed phenotype. No effect was found when dsRNA-gfp was used, indicating the specific effect of dsRNA-awd. Our findings suggest a role for awd in ACP wing development and metamorphosis. awd could serve as a potential target for insect management either via direct application of dsRNA or by producing transgenic plants expressing dsRNA-awd. These strategies will help to mitigate HLB by controlling ACP.

Authors+Show Affiliations

Department of Entomology and Nematology, Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, Florida, USA.No affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

23734251

Citation

El-Shesheny, Ibrahim, et al. "Silencing Abnormal Wing Disc Gene of the Asian Citrus Psyllid, Diaphorina Citri Disrupts Adult Wing Development and Increases Nymph Mortality." PloS One, vol. 8, no. 5, 2013, pp. e65392.
El-Shesheny I, Hajeri S, El-Hawary I, et al. Silencing abnormal wing disc gene of the Asian citrus psyllid, Diaphorina citri disrupts adult wing development and increases nymph mortality. PLoS One. 2013;8(5):e65392.
El-Shesheny, I., Hajeri, S., El-Hawary, I., Gowda, S., & Killiny, N. (2013). Silencing abnormal wing disc gene of the Asian citrus psyllid, Diaphorina citri disrupts adult wing development and increases nymph mortality. PloS One, 8(5), e65392. https://doi.org/10.1371/journal.pone.0065392
El-Shesheny I, et al. Silencing Abnormal Wing Disc Gene of the Asian Citrus Psyllid, Diaphorina Citri Disrupts Adult Wing Development and Increases Nymph Mortality. PLoS One. 2013;8(5):e65392. PubMed PMID: 23734251.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Silencing abnormal wing disc gene of the Asian citrus psyllid, Diaphorina citri disrupts adult wing development and increases nymph mortality. AU - El-Shesheny,Ibrahim, AU - Hajeri,Subhas, AU - El-Hawary,Ibrahim, AU - Gowda,Siddarame, AU - Killiny,Nabil, Y1 - 2013/05/29/ PY - 2013/03/05/received PY - 2013/04/29/accepted PY - 2013/6/5/entrez PY - 2013/6/5/pubmed PY - 2014/1/7/medline SP - e65392 EP - e65392 JF - PloS one JO - PLoS One VL - 8 IS - 5 N2 - Huanglongbing (HLB) causes considerable economic losses to citrus industries worldwide. Its management depends on controlling of the Asian citrus Psyllid (ACP), the vector of the bacterium, Candidatus Liberibacter asiaticus (CLas), the causal agent of HLB. Silencing genes by RNA interference (RNAi) is a promising tool to explore gene functions as well as control pests. In the current study, abnormal wing disc (awd) gene associated with wing development in insects is used to interfere with the flight of psyllids. Our study showed that transcription of awd is development-dependent and the highest level was found in the last instar (5(th)) of the nymphal stage. Micro-application (topical application) of dsRNA to 5(th) instar of nymphs caused significant nymphal mortality and adult wing-malformation. These adverse effects in ACP were positively correlated with the amounts of dsRNA used. A qRT-PCR analysis confirmed the dsRNA-mediated transcriptional down-regulation of the awd gene. Significant down-regulation was required to induce a wing-malformed phenotype. No effect was found when dsRNA-gfp was used, indicating the specific effect of dsRNA-awd. Our findings suggest a role for awd in ACP wing development and metamorphosis. awd could serve as a potential target for insect management either via direct application of dsRNA or by producing transgenic plants expressing dsRNA-awd. These strategies will help to mitigate HLB by controlling ACP. SN - 1932-6203 UR - https://www.unboundmedicine.com/medline/citation/23734251/Silencing_abnormal_wing_disc_gene_of_the_Asian_citrus_psyllid_Diaphorina_citri_disrupts_adult_wing_development_and_increases_nymph_mortality_ L2 - https://dx.plos.org/10.1371/journal.pone.0065392 DB - PRIME DP - Unbound Medicine ER -