Tags

Type your tag names separated by a space and hit enter

In vitro production of short-chain fatty acids from resistant starch by pig faecal inoculum.
Animal. 2013 Sep; 7(9):1446-53.A

Abstract

The need to improve the knowledge of fermentation processes within the digestive tract in pigs is growing, particularly for ingredients that may act as potential prebiotic sources, such as resistant starch (RS). A study (based on enzymatic digestion followed by in vitro fermentation) was conducted to investigate whether various sources of RS, obtained from eight native starches characterized by inherent heterogeneous starch chemistry and structure, can influence short-chain fatty acid (SCFA) concentrations and relative production kinetics. Total and individual SCFA productions were evaluated over time and up to 72 h of incubation. The in vitro hydrolysis of native starches allowed a classification from very high [≥ 650 g/kg dry matter (DM)] to low (<50 g/kg DM) RS amount. The total SCFA production was similar between ingredients, whereas acetate and butyrate molar ratios in the SCFA profile differed (from 0.48 to 0.56 and from 0.17 to 0.25, respectively; P < 0.05). Differences in fermentation kinetic parameters for total and individual SCFA productions were observed (P < 0.05). Considering the total SCFA production after 72 h of incubation, the time at which half of the maximum production has been reached (T 1/2), the maximum rate of production (R max) and its time of occurrence (T max) differed between ingredients (P < 0.05), with values ranging from 6.1 to 11.9 h, from 0.459 to 1.300 mmol/g DM incubated per hour and from 5.1 to 9.8 h, respectively. Overall, a similar trend was observed considering individual SCFA productions. In particular, T 1/2 ranged from 6.4 to 12.5 h, from 5.5 to 12.5 h and from 6.7 to 11.3 h for acetate, propionate and butyrate, respectively (P < 0.05). For R max, differences were obtained for propionate and butyrate productions (P < 0.05), whereas no difference was recorded for acetate. In summary, our findings indicated that both quantitative and qualitative production of SCFA and related kinetics were influenced by fermentation of RS obtained from native starches characterized by heterogeneous starch characteristics. Current findings are based on an in vitro approach, and thus require further in vivo validations.

Authors+Show Affiliations

Institute of Food Science and Nutrition, Faculty of Agriculture, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29100 Piacenza, Italy.No affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

23782951

Citation

Giuberti, G, et al. "In Vitro Production of Short-chain Fatty Acids From Resistant Starch By Pig Faecal Inoculum." Animal : an International Journal of Animal Bioscience, vol. 7, no. 9, 2013, pp. 1446-53.
Giuberti G, Gallo A, Moschini M, et al. In vitro production of short-chain fatty acids from resistant starch by pig faecal inoculum. Animal. 2013;7(9):1446-53.
Giuberti, G., Gallo, A., Moschini, M., & Masoero, F. (2013). In vitro production of short-chain fatty acids from resistant starch by pig faecal inoculum. Animal : an International Journal of Animal Bioscience, 7(9), 1446-53. https://doi.org/10.1017/S1751731113001092
Giuberti G, et al. In Vitro Production of Short-chain Fatty Acids From Resistant Starch By Pig Faecal Inoculum. Animal. 2013;7(9):1446-53. PubMed PMID: 23782951.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - In vitro production of short-chain fatty acids from resistant starch by pig faecal inoculum. AU - Giuberti,G, AU - Gallo,A, AU - Moschini,M, AU - Masoero,F, Y1 - 2013/06/20/ PY - 2013/6/21/entrez PY - 2013/6/21/pubmed PY - 2013/10/18/medline SP - 1446 EP - 53 JF - Animal : an international journal of animal bioscience JO - Animal VL - 7 IS - 9 N2 - The need to improve the knowledge of fermentation processes within the digestive tract in pigs is growing, particularly for ingredients that may act as potential prebiotic sources, such as resistant starch (RS). A study (based on enzymatic digestion followed by in vitro fermentation) was conducted to investigate whether various sources of RS, obtained from eight native starches characterized by inherent heterogeneous starch chemistry and structure, can influence short-chain fatty acid (SCFA) concentrations and relative production kinetics. Total and individual SCFA productions were evaluated over time and up to 72 h of incubation. The in vitro hydrolysis of native starches allowed a classification from very high [≥ 650 g/kg dry matter (DM)] to low (<50 g/kg DM) RS amount. The total SCFA production was similar between ingredients, whereas acetate and butyrate molar ratios in the SCFA profile differed (from 0.48 to 0.56 and from 0.17 to 0.25, respectively; P < 0.05). Differences in fermentation kinetic parameters for total and individual SCFA productions were observed (P < 0.05). Considering the total SCFA production after 72 h of incubation, the time at which half of the maximum production has been reached (T 1/2), the maximum rate of production (R max) and its time of occurrence (T max) differed between ingredients (P < 0.05), with values ranging from 6.1 to 11.9 h, from 0.459 to 1.300 mmol/g DM incubated per hour and from 5.1 to 9.8 h, respectively. Overall, a similar trend was observed considering individual SCFA productions. In particular, T 1/2 ranged from 6.4 to 12.5 h, from 5.5 to 12.5 h and from 6.7 to 11.3 h for acetate, propionate and butyrate, respectively (P < 0.05). For R max, differences were obtained for propionate and butyrate productions (P < 0.05), whereas no difference was recorded for acetate. In summary, our findings indicated that both quantitative and qualitative production of SCFA and related kinetics were influenced by fermentation of RS obtained from native starches characterized by heterogeneous starch characteristics. Current findings are based on an in vitro approach, and thus require further in vivo validations. SN - 1751-732X UR - https://www.unboundmedicine.com/medline/citation/23782951/In_vitro_production_of_short_chain_fatty_acids_from_resistant_starch_by_pig_faecal_inoculum_ L2 - https://www.cambridge.org/core/product/identifier/S1751731113001092/type/journal_article DB - PRIME DP - Unbound Medicine ER -