Tags

Type your tag names separated by a space and hit enter

Evaluation of analgesic, antioxidant, cytotoxic and metabolic effects of pregabalin for the use in neuropathic pain.
Neurol Res. 2013 Nov; 35(9):948-58.NR

Abstract

OBJECTIVE

The aim of this research was to evaluate analgesic, antioxidant, metabolic, and cytotoxic effects of pregabalin (PGB), which is widely applied for the treatment of neuropathic pain syndromes in diabetic patients.

METHODS

We used the streptozotocin (STZ) model of painful diabetic neuropathy (PDN) in mice and we measured the effect of intraperitoneally administered PGB on tactile and thermal nociceptive thresholds in the von Frey and hot plate assays, respectively. The influence of PGB on the motor coordination of diabetic animals was investigated in the rotarod test. In vitro in HepG2 and 3T3-L1 cell lines cytotoxicity of PGB, its influence on glucose utilization, and lipid accumulation were assessed. The antioxidant capacity of PGB was evaluated spectrophotometrically using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical method.

RESULTS

Pregabalin was a very efficacious antiallodynic and analgesic drug capable of increasing the pain thresholds for tactile allodynia and thermal hyperalgesia in diabetic mice. In the von Frey test at a dose of 30 mg/kg it elevated the pain threshold for 168% versus diabetic control and in the hot plate test this dose prolonged the latency time to pain reaction for 130% versus control value of diabetic mice. No motor deficits were observed in PGB-treated diabetic animals. In vitro PGB did not influence glucose utilization or lipid accumulation. No antioxidant or cytotoxic effects of PGB were observed at concentrations 1-100 μM.

DISCUSSION AND CONCLUSION

Our experiments demonstrated significant antiallodynic and analgesic properties of PGB in mice. In vitro studies showed that this drug is metabolically neutral. It did not cause motor coordination impairments in diabetic animals either. These effects might be of great importance for diabetic patients.

Authors+Show Affiliations

Jagiellonian University, Cracow, Poland.No affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

23816319

Citation

Sałat, Kinga, et al. "Evaluation of Analgesic, Antioxidant, Cytotoxic and Metabolic Effects of Pregabalin for the Use in Neuropathic Pain." Neurological Research, vol. 35, no. 9, 2013, pp. 948-58.
Sałat K, Librowski T, Nawiesniak B, et al. Evaluation of analgesic, antioxidant, cytotoxic and metabolic effects of pregabalin for the use in neuropathic pain. Neurol Res. 2013;35(9):948-58.
Sałat, K., Librowski, T., Nawiesniak, B., & Gluch-Lutwin, M. (2013). Evaluation of analgesic, antioxidant, cytotoxic and metabolic effects of pregabalin for the use in neuropathic pain. Neurological Research, 35(9), 948-58. https://doi.org/10.1179/1743132813Y.0000000236
Sałat K, et al. Evaluation of Analgesic, Antioxidant, Cytotoxic and Metabolic Effects of Pregabalin for the Use in Neuropathic Pain. Neurol Res. 2013;35(9):948-58. PubMed PMID: 23816319.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Evaluation of analgesic, antioxidant, cytotoxic and metabolic effects of pregabalin for the use in neuropathic pain. AU - Sałat,Kinga, AU - Librowski,Tadeusz, AU - Nawiesniak,Barbara, AU - Gluch-Lutwin,Monika, Y1 - 2013/07/01/ PY - 2013/7/3/entrez PY - 2013/7/3/pubmed PY - 2014/9/10/medline SP - 948 EP - 58 JF - Neurological research JO - Neurol Res VL - 35 IS - 9 N2 - OBJECTIVE: The aim of this research was to evaluate analgesic, antioxidant, metabolic, and cytotoxic effects of pregabalin (PGB), which is widely applied for the treatment of neuropathic pain syndromes in diabetic patients. METHODS: We used the streptozotocin (STZ) model of painful diabetic neuropathy (PDN) in mice and we measured the effect of intraperitoneally administered PGB on tactile and thermal nociceptive thresholds in the von Frey and hot plate assays, respectively. The influence of PGB on the motor coordination of diabetic animals was investigated in the rotarod test. In vitro in HepG2 and 3T3-L1 cell lines cytotoxicity of PGB, its influence on glucose utilization, and lipid accumulation were assessed. The antioxidant capacity of PGB was evaluated spectrophotometrically using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical method. RESULTS: Pregabalin was a very efficacious antiallodynic and analgesic drug capable of increasing the pain thresholds for tactile allodynia and thermal hyperalgesia in diabetic mice. In the von Frey test at a dose of 30 mg/kg it elevated the pain threshold for 168% versus diabetic control and in the hot plate test this dose prolonged the latency time to pain reaction for 130% versus control value of diabetic mice. No motor deficits were observed in PGB-treated diabetic animals. In vitro PGB did not influence glucose utilization or lipid accumulation. No antioxidant or cytotoxic effects of PGB were observed at concentrations 1-100 μM. DISCUSSION AND CONCLUSION: Our experiments demonstrated significant antiallodynic and analgesic properties of PGB in mice. In vitro studies showed that this drug is metabolically neutral. It did not cause motor coordination impairments in diabetic animals either. These effects might be of great importance for diabetic patients. SN - 1743-1328 UR - https://www.unboundmedicine.com/medline/citation/23816319/Evaluation_of_analgesic_antioxidant_cytotoxic_and_metabolic_effects_of_pregabalin_for_the_use_in_neuropathic_pain_ L2 - https://www.tandfonline.com/doi/full/10.1179/1743132813Y.0000000236 DB - PRIME DP - Unbound Medicine ER -