Tags

Type your tag names separated by a space and hit enter

Molecular dynamics simulation study and molecular docking descriptors in structure-based QSAR on acetylcholinesterase (AChE) inhibitors.
SAR QSAR Environ Res. 2013; 24(9):773-94.SQ

Abstract

In this study we present an approach for predicting the inhibitory activity of acetylcholinesterase (AChE) inhibitors by combining molecular dynamics (MD) simulation and docking studies in a structure-based quantitative structure-activity relationship (QSAR) model. The MD simulation was performed on AChE to obtain enzyme conformation in a water environment. The resulting conformation of the enzyme was used for docking with the most potent inhibitor (26a). Docking analysis revealed that hydrophobic interactions play important roles in the AChE-inhibitor complex. Then, all inhibitors that could bind simultaneously at the catalytic site and at the peripheral anionic site of AChE were docked into the enzyme and their interactions with AChE were used as new interpretable descriptors in a structure-based QSAR model. The least squares support vector regression was constructed using the four most relevant docking descriptors and one molecular structure descriptor. The Q(2) value of the model was found to be 0.790. Furthermore, to study the enzyme conformation stability, a second MD simulation was performed on AChE-inhibitor 26a complex. In MD simulation, the topological parameters of the inhibitor were derived from the PRODRG server, and partial atomic charges were modified using the B3LYP/6-31G level of theory. The radius of gyration for the complex showed that AChE conformation did not change in the presence of the inhibitors.

Authors+Show Affiliations

Department of Chemistry Isfahan University of Technology, Isfahan, Iran.No affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article

Language

eng

PubMed ID

23863115

Citation

Gharaghani, S, et al. "Molecular Dynamics Simulation Study and Molecular Docking Descriptors in Structure-based QSAR On Acetylcholinesterase (AChE) Inhibitors." SAR and QSAR in Environmental Research, vol. 24, no. 9, 2013, pp. 773-94.
Gharaghani S, Khayamian T, Ebrahimi M. Molecular dynamics simulation study and molecular docking descriptors in structure-based QSAR on acetylcholinesterase (AChE) inhibitors. SAR QSAR Environ Res. 2013;24(9):773-94.
Gharaghani, S., Khayamian, T., & Ebrahimi, M. (2013). Molecular dynamics simulation study and molecular docking descriptors in structure-based QSAR on acetylcholinesterase (AChE) inhibitors. SAR and QSAR in Environmental Research, 24(9), 773-94. https://doi.org/10.1080/1062936X.2013.792877
Gharaghani S, Khayamian T, Ebrahimi M. Molecular Dynamics Simulation Study and Molecular Docking Descriptors in Structure-based QSAR On Acetylcholinesterase (AChE) Inhibitors. SAR QSAR Environ Res. 2013;24(9):773-94. PubMed PMID: 23863115.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Molecular dynamics simulation study and molecular docking descriptors in structure-based QSAR on acetylcholinesterase (AChE) inhibitors. AU - Gharaghani,S, AU - Khayamian,T, AU - Ebrahimi,M, Y1 - 2013/07/17/ PY - 2013/7/19/entrez PY - 2013/7/19/pubmed PY - 2014/3/14/medline SP - 773 EP - 94 JF - SAR and QSAR in environmental research JO - SAR QSAR Environ Res VL - 24 IS - 9 N2 - In this study we present an approach for predicting the inhibitory activity of acetylcholinesterase (AChE) inhibitors by combining molecular dynamics (MD) simulation and docking studies in a structure-based quantitative structure-activity relationship (QSAR) model. The MD simulation was performed on AChE to obtain enzyme conformation in a water environment. The resulting conformation of the enzyme was used for docking with the most potent inhibitor (26a). Docking analysis revealed that hydrophobic interactions play important roles in the AChE-inhibitor complex. Then, all inhibitors that could bind simultaneously at the catalytic site and at the peripheral anionic site of AChE were docked into the enzyme and their interactions with AChE were used as new interpretable descriptors in a structure-based QSAR model. The least squares support vector regression was constructed using the four most relevant docking descriptors and one molecular structure descriptor. The Q(2) value of the model was found to be 0.790. Furthermore, to study the enzyme conformation stability, a second MD simulation was performed on AChE-inhibitor 26a complex. In MD simulation, the topological parameters of the inhibitor were derived from the PRODRG server, and partial atomic charges were modified using the B3LYP/6-31G level of theory. The radius of gyration for the complex showed that AChE conformation did not change in the presence of the inhibitors. SN - 1029-046X UR - https://www.unboundmedicine.com/medline/citation/23863115/Molecular_dynamics_simulation_study_and_molecular_docking_descriptors_in_structure_based_QSAR_on_acetylcholinesterase__AChE__inhibitors_ DB - PRIME DP - Unbound Medicine ER -