Tags

Type your tag names separated by a space and hit enter

Hemilabile N-xylyl-N'-methylperimidine carbene iridium complexes as catalysts for C-H activation and dehydrogenative silylation: dual role of N-xylyl moiety for ortho-C-H bond activation and reductive bond cleavage.
J Am Chem Soc. 2013 Sep 04; 135(35):13149-61.JA

Abstract

Direct dehydrogenative silylation of pyridyl and iminyl substrates with triethylsilane was achieved using (L)Ir(cod)(X) (1) (L = a perimidine-based carbene ligand, X = OAc and OCOPh) complexes as catalysts under toluene refluxing conditions in the presence of norbornene as a hydrogen scavenger, and the silylated products were obtained in good yields. The isolated bis(cyclometalated)iridium complexes, (C(∧)C:)(C(∧)N)IrOAc (2) (C(∧)C: = a cyclometalated perimidine-carbene ligand and C(∧)N = a cyclometalated pyridyl- and iminyl-ligated aromatic substrate), were key intermediates, where cyclometalated five-membered metallacycles of substrates such as phenylpyridine were selectively formed before yielding mono-ortho-silylation products. The bis(cyclometalated)iridium complex ((Xy)C(∧)C:)(C(∧)N)IrOAc (2d) ((Xy)C(∧)C: = a cyclometalated N-xylyl-N'-methylperimidine-carbene ligand and C(∧)N = a 2-pyridylphenyl ligand), reacted with 2 equiv of Et3SiH to give an iridium hydride complex, (L(4))(C(∧)N)Ir(H)(SiEt3) (8d) (L(4) = N-CH3, N-3,5-(CH3)2C6H3 perimidine), via demetalation of a N-3,5-xylyl ring of the carbene ligand of 2d. The formation of 8d was confirmed by isolating the corresponding chloro complex (L(4))(C(∧)N)Ir(Cl)(SiEt3) (8d-Cl) by treatment with CCl4. The N-methyl moiety of the carbene ligand coordinated to 8d was cyclometalated in the presence of norbornene at room temperature to afford ((Me)C(∧)C:)(C(∧)N)Ir(SiEt3) (10d) ((Me)C(∧)C: = a cyclometalated N-xylyl-N'-methylperimidine-carbene), while at high temperature 8d reacted with norbornene and Et3SiH to afford the silylated product, 2-(2-triethylsilyl)phenylpyridine (3a) and norbornane. A deuterium labeling experiment using 2d and Et3SiD (excess) revealed the incorporation of deuterium atoms at two ortho-positions of the N-xylyl group (>90%) and at the 3-position of 2-pyridylphenyl ligand (ca. 40%) within 3 h at room temperature, indicating that the cyclometalation/demetalation of the N-xylylperimidine carbene and 2-phenylpyridine ligands were reversible processes. Isolation of these cyclometalated iridium complexes under controlled conditions and D-labeling experiments thus revealed a dual function of the N-aryl group bound to the perimidine-carbene ligand, which acted as both a neutral carbene ligand and a monoanionic ortho-metalated aryl-carbene ligand through reversible C-H bond activation and Ir-C bond cleavage of the N-aryl group during the catalytic cycle.

Authors+Show Affiliations

Department of Chemistry, Graduate School of Engineering Science, Osaka University, CRST, JST, Toyonaka, Osaka 560-8531, Japan.No affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article

Language

eng

PubMed ID

23914836

Citation

Choi, Gyeongshin, et al. "Hemilabile N-xylyl-N'-methylperimidine Carbene Iridium Complexes as Catalysts for C-H Activation and Dehydrogenative Silylation: Dual Role of N-xylyl Moiety for ortho-C-H Bond Activation and Reductive Bond Cleavage." Journal of the American Chemical Society, vol. 135, no. 35, 2013, pp. 13149-61.
Choi G, Tsurugi H, Mashima K. Hemilabile N-xylyl-N'-methylperimidine carbene iridium complexes as catalysts for C-H activation and dehydrogenative silylation: dual role of N-xylyl moiety for ortho-C-H bond activation and reductive bond cleavage. J Am Chem Soc. 2013;135(35):13149-61.
Choi, G., Tsurugi, H., & Mashima, K. (2013). Hemilabile N-xylyl-N'-methylperimidine carbene iridium complexes as catalysts for C-H activation and dehydrogenative silylation: dual role of N-xylyl moiety for ortho-C-H bond activation and reductive bond cleavage. Journal of the American Chemical Society, 135(35), 13149-61. https://doi.org/10.1021/ja406519u
Choi G, Tsurugi H, Mashima K. Hemilabile N-xylyl-N'-methylperimidine Carbene Iridium Complexes as Catalysts for C-H Activation and Dehydrogenative Silylation: Dual Role of N-xylyl Moiety for ortho-C-H Bond Activation and Reductive Bond Cleavage. J Am Chem Soc. 2013 Sep 4;135(35):13149-61. PubMed PMID: 23914836.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Hemilabile N-xylyl-N'-methylperimidine carbene iridium complexes as catalysts for C-H activation and dehydrogenative silylation: dual role of N-xylyl moiety for ortho-C-H bond activation and reductive bond cleavage. AU - Choi,Gyeongshin, AU - Tsurugi,Hayato, AU - Mashima,Kazushi, Y1 - 2013/08/23/ PY - 2013/8/7/entrez PY - 2013/8/7/pubmed PY - 2013/8/7/medline SP - 13149 EP - 61 JF - Journal of the American Chemical Society JO - J Am Chem Soc VL - 135 IS - 35 N2 - Direct dehydrogenative silylation of pyridyl and iminyl substrates with triethylsilane was achieved using (L)Ir(cod)(X) (1) (L = a perimidine-based carbene ligand, X = OAc and OCOPh) complexes as catalysts under toluene refluxing conditions in the presence of norbornene as a hydrogen scavenger, and the silylated products were obtained in good yields. The isolated bis(cyclometalated)iridium complexes, (C(∧)C:)(C(∧)N)IrOAc (2) (C(∧)C: = a cyclometalated perimidine-carbene ligand and C(∧)N = a cyclometalated pyridyl- and iminyl-ligated aromatic substrate), were key intermediates, where cyclometalated five-membered metallacycles of substrates such as phenylpyridine were selectively formed before yielding mono-ortho-silylation products. The bis(cyclometalated)iridium complex ((Xy)C(∧)C:)(C(∧)N)IrOAc (2d) ((Xy)C(∧)C: = a cyclometalated N-xylyl-N'-methylperimidine-carbene ligand and C(∧)N = a 2-pyridylphenyl ligand), reacted with 2 equiv of Et3SiH to give an iridium hydride complex, (L(4))(C(∧)N)Ir(H)(SiEt3) (8d) (L(4) = N-CH3, N-3,5-(CH3)2C6H3 perimidine), via demetalation of a N-3,5-xylyl ring of the carbene ligand of 2d. The formation of 8d was confirmed by isolating the corresponding chloro complex (L(4))(C(∧)N)Ir(Cl)(SiEt3) (8d-Cl) by treatment with CCl4. The N-methyl moiety of the carbene ligand coordinated to 8d was cyclometalated in the presence of norbornene at room temperature to afford ((Me)C(∧)C:)(C(∧)N)Ir(SiEt3) (10d) ((Me)C(∧)C: = a cyclometalated N-xylyl-N'-methylperimidine-carbene), while at high temperature 8d reacted with norbornene and Et3SiH to afford the silylated product, 2-(2-triethylsilyl)phenylpyridine (3a) and norbornane. A deuterium labeling experiment using 2d and Et3SiD (excess) revealed the incorporation of deuterium atoms at two ortho-positions of the N-xylyl group (>90%) and at the 3-position of 2-pyridylphenyl ligand (ca. 40%) within 3 h at room temperature, indicating that the cyclometalation/demetalation of the N-xylylperimidine carbene and 2-phenylpyridine ligands were reversible processes. Isolation of these cyclometalated iridium complexes under controlled conditions and D-labeling experiments thus revealed a dual function of the N-aryl group bound to the perimidine-carbene ligand, which acted as both a neutral carbene ligand and a monoanionic ortho-metalated aryl-carbene ligand through reversible C-H bond activation and Ir-C bond cleavage of the N-aryl group during the catalytic cycle. SN - 1520-5126 UR - https://www.unboundmedicine.com/medline/citation/23914836/Hemilabile_N_xylyl_N'_methylperimidine_carbene_iridium_complexes_as_catalysts_for_C_H_activation_and_dehydrogenative_silylation:_dual_role_of_N_xylyl_moiety_for_ortho_C_H_bond_activation_and_reductive_bond_cleavage_ L2 - https://doi.org/10.1021/ja406519u DB - PRIME DP - Unbound Medicine ER -
Try the Free App:
Prime PubMed app for iOS iPhone iPad
Prime PubMed app for Android
Prime PubMed is provided
free to individuals by:
Unbound Medicine.