Tags

Type your tag names separated by a space and hit enter

Moderate prevalence of antimicrobial resistance in Escherichia coli isolates from lettuce, irrigation water, and soil.
Appl Environ Microbiol. 2013 Nov; 79(21):6677-83.AE

Abstract

Fresh produce is known to carry nonpathogenic epiphytic microorganisms. During agricultural production and harvesting, leafy greens can become contaminated with antibiotic-resistant pathogens or commensals from animal and human sources. As lettuce does not undergo any inactivation or preservation treatment during processing, consumers may be exposed directly to all of the (resistant) bacteria present. In this study, we investigated whether lettuce or its production environment (irrigation water, soil) is able to act as a vector or reservoir of antimicrobial-resistant Escherichia coli. Over a 1-year period, eight lettuce farms were visited multiple times and 738 samples, including lettuce seedlings (leaves and soil), soil, irrigation water, and lettuce leaves were collected. From these samples, 473 isolates of Escherichia coli were obtained and tested for resistance to 14 antimicrobials. Fifty-four isolates (11.4%) were resistant to one or more antimicrobials. The highest resistance rate was observed for ampicillin (7%), followed by cephalothin, amoxicillin-clavulanic acid, tetracycline, trimethoprim, and streptomycin, with resistance rates between 4.4 and 3.6%. No resistance to amikacin, ciprofloxacin, gentamicin, or kanamycin was observed. One isolate was resistant to cefotaxime. Among the multiresistant isolates (n = 37), ampicillin and cephalothin showed the highest resistance rates, at 76 and 52%, respectively. E. coli isolates from lettuce showed higher resistance rates than E. coli isolates obtained from soil or irrigation water samples. When the presence of resistance in E. coli isolates from lettuce production sites and their resistance patterns were compared with the profiles of animal-derived E. coli strains, they were found to be the most comparable with what is found in the cattle reservoir. This may suggest that cattle are a potential reservoir of antimicrobial-resistant E. coli strains in plant primary production.

Authors+Show Affiliations

Laboratory of Food Microbiology and Food Preservation, Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.No affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

23974140

Citation

Holvoet, Kevin, et al. "Moderate Prevalence of Antimicrobial Resistance in Escherichia Coli Isolates From Lettuce, Irrigation Water, and Soil." Applied and Environmental Microbiology, vol. 79, no. 21, 2013, pp. 6677-83.
Holvoet K, Sampers I, Callens B, et al. Moderate prevalence of antimicrobial resistance in Escherichia coli isolates from lettuce, irrigation water, and soil. Appl Environ Microbiol. 2013;79(21):6677-83.
Holvoet, K., Sampers, I., Callens, B., Dewulf, J., & Uyttendaele, M. (2013). Moderate prevalence of antimicrobial resistance in Escherichia coli isolates from lettuce, irrigation water, and soil. Applied and Environmental Microbiology, 79(21), 6677-83. https://doi.org/10.1128/AEM.01995-13
Holvoet K, et al. Moderate Prevalence of Antimicrobial Resistance in Escherichia Coli Isolates From Lettuce, Irrigation Water, and Soil. Appl Environ Microbiol. 2013;79(21):6677-83. PubMed PMID: 23974140.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Moderate prevalence of antimicrobial resistance in Escherichia coli isolates from lettuce, irrigation water, and soil. AU - Holvoet,Kevin, AU - Sampers,Imca, AU - Callens,Benedicte, AU - Dewulf,Jeroen, AU - Uyttendaele,Mieke, Y1 - 2013/08/23/ PY - 2013/8/27/entrez PY - 2013/8/27/pubmed PY - 2014/5/3/medline SP - 6677 EP - 83 JF - Applied and environmental microbiology JO - Appl Environ Microbiol VL - 79 IS - 21 N2 - Fresh produce is known to carry nonpathogenic epiphytic microorganisms. During agricultural production and harvesting, leafy greens can become contaminated with antibiotic-resistant pathogens or commensals from animal and human sources. As lettuce does not undergo any inactivation or preservation treatment during processing, consumers may be exposed directly to all of the (resistant) bacteria present. In this study, we investigated whether lettuce or its production environment (irrigation water, soil) is able to act as a vector or reservoir of antimicrobial-resistant Escherichia coli. Over a 1-year period, eight lettuce farms were visited multiple times and 738 samples, including lettuce seedlings (leaves and soil), soil, irrigation water, and lettuce leaves were collected. From these samples, 473 isolates of Escherichia coli were obtained and tested for resistance to 14 antimicrobials. Fifty-four isolates (11.4%) were resistant to one or more antimicrobials. The highest resistance rate was observed for ampicillin (7%), followed by cephalothin, amoxicillin-clavulanic acid, tetracycline, trimethoprim, and streptomycin, with resistance rates between 4.4 and 3.6%. No resistance to amikacin, ciprofloxacin, gentamicin, or kanamycin was observed. One isolate was resistant to cefotaxime. Among the multiresistant isolates (n = 37), ampicillin and cephalothin showed the highest resistance rates, at 76 and 52%, respectively. E. coli isolates from lettuce showed higher resistance rates than E. coli isolates obtained from soil or irrigation water samples. When the presence of resistance in E. coli isolates from lettuce production sites and their resistance patterns were compared with the profiles of animal-derived E. coli strains, they were found to be the most comparable with what is found in the cattle reservoir. This may suggest that cattle are a potential reservoir of antimicrobial-resistant E. coli strains in plant primary production. SN - 1098-5336 UR - https://www.unboundmedicine.com/medline/citation/23974140/Moderate_prevalence_of_antimicrobial_resistance_in_Escherichia_coli_isolates_from_lettuce_irrigation_water_and_soil_ L2 - http://aem.asm.org/cgi/pmidlookup?view=long&pmid=23974140 DB - PRIME DP - Unbound Medicine ER -