Tags

Type your tag names separated by a space and hit enter

Sharing the slope: depth partitioning of agariciid corals and associated Symbiodinium across shallow and mesophotic habitats (2-60 m) on a Caribbean reef.
BMC Evol Biol. 2013 Sep 23; 13:205.BE

Abstract

BACKGROUND

Scleractinian corals and their algal endosymbionts (genus Symbiodinium) exhibit distinct bathymetric distributions on coral reefs. Yet, few studies have assessed the evolutionary context of these ecological distributions by exploring the genetic diversity of closely related coral species and their associated Symbiodinium over large depth ranges. Here we assess the distribution and genetic diversity of five agariciid coral species (Agaricia humilis, A. agaricites, A. lamarcki, A. grahamae, and Helioseris cucullata) and their algal endosymbionts (Symbiodinium) across a large depth gradient (2-60 m) covering shallow to mesophotic depths on a Caribbean reef.

RESULTS

The five agariciid species exhibited distinct depth distributions, and dominant Symbiodinium associations were found to be species-specific, with each of the agariciid species harbouring a distinct ITS2-DGGE profile (except for a shared profile between A. lamarcki and A. grahamae). Only A. lamarcki harboured different Symbiodinium types across its depth distribution (i.e. exhibited symbiont zonation). Phylogenetic analysis (atp6) of the coral hosts demonstrated a division of the Agaricia genus into two major lineages that correspond to their bathymetric distribution ("shallow": A. humilis / A. agaricites and "deep": A. lamarcki / A. grahamae), highlighting the role of depth-related factors in the diversification of these congeneric agariciid species. The divergence between "shallow" and "deep" host species was reflected in the relatedness of the associated Symbiodinium (with A. lamarcki and A. grahamae sharing an identical Symbiodinium profile, and A. humilis and A. agaricites harbouring a related ITS2 sequence in their Symbiodinium profiles), corroborating the notion that brooding corals and their Symbiodinium are engaged in coevolutionary processes.

CONCLUSIONS

Our findings support the hypothesis that the depth-related environmental gradient on reefs has played an important role in the diversification of the genus Agaricia and their associated Symbiodinium, resulting in a genetic segregation between coral host-symbiont communities at shallow and mesophotic depths.

Authors+Show Affiliations

School of Biological Sciences, The University of Queensland, 4072 St Lucia, QLD, Australia. pim@uq.edu.au.No affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

24059868

Citation

Bongaerts, Pim, et al. "Sharing the Slope: Depth Partitioning of Agariciid Corals and Associated Symbiodinium Across Shallow and Mesophotic Habitats (2-60 M) On a Caribbean Reef." BMC Evolutionary Biology, vol. 13, 2013, p. 205.
Bongaerts P, Frade PR, Ogier JJ, et al. Sharing the slope: depth partitioning of agariciid corals and associated Symbiodinium across shallow and mesophotic habitats (2-60 m) on a Caribbean reef. BMC Evol Biol. 2013;13:205.
Bongaerts, P., Frade, P. R., Ogier, J. J., Hay, K. B., van Bleijswijk, J., Englebert, N., Vermeij, M. J., Bak, R. P., Visser, P. M., & Hoegh-Guldberg, O. (2013). Sharing the slope: depth partitioning of agariciid corals and associated Symbiodinium across shallow and mesophotic habitats (2-60 m) on a Caribbean reef. BMC Evolutionary Biology, 13, 205. https://doi.org/10.1186/1471-2148-13-205
Bongaerts P, et al. Sharing the Slope: Depth Partitioning of Agariciid Corals and Associated Symbiodinium Across Shallow and Mesophotic Habitats (2-60 M) On a Caribbean Reef. BMC Evol Biol. 2013 Sep 23;13:205. PubMed PMID: 24059868.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Sharing the slope: depth partitioning of agariciid corals and associated Symbiodinium across shallow and mesophotic habitats (2-60 m) on a Caribbean reef. AU - Bongaerts,Pim, AU - Frade,Pedro R, AU - Ogier,Julie J, AU - Hay,Kyra B, AU - van Bleijswijk,Judith, AU - Englebert,Norbert, AU - Vermeij,Mark J A, AU - Bak,Rolf P M, AU - Visser,Petra M, AU - Hoegh-Guldberg,Ove, Y1 - 2013/09/23/ PY - 2012/06/15/received PY - 2013/08/14/accepted PY - 2013/9/25/entrez PY - 2013/9/26/pubmed PY - 2014/4/25/medline SP - 205 EP - 205 JF - BMC evolutionary biology JO - BMC Evol Biol VL - 13 N2 - BACKGROUND: Scleractinian corals and their algal endosymbionts (genus Symbiodinium) exhibit distinct bathymetric distributions on coral reefs. Yet, few studies have assessed the evolutionary context of these ecological distributions by exploring the genetic diversity of closely related coral species and their associated Symbiodinium over large depth ranges. Here we assess the distribution and genetic diversity of five agariciid coral species (Agaricia humilis, A. agaricites, A. lamarcki, A. grahamae, and Helioseris cucullata) and their algal endosymbionts (Symbiodinium) across a large depth gradient (2-60 m) covering shallow to mesophotic depths on a Caribbean reef. RESULTS: The five agariciid species exhibited distinct depth distributions, and dominant Symbiodinium associations were found to be species-specific, with each of the agariciid species harbouring a distinct ITS2-DGGE profile (except for a shared profile between A. lamarcki and A. grahamae). Only A. lamarcki harboured different Symbiodinium types across its depth distribution (i.e. exhibited symbiont zonation). Phylogenetic analysis (atp6) of the coral hosts demonstrated a division of the Agaricia genus into two major lineages that correspond to their bathymetric distribution ("shallow": A. humilis / A. agaricites and "deep": A. lamarcki / A. grahamae), highlighting the role of depth-related factors in the diversification of these congeneric agariciid species. The divergence between "shallow" and "deep" host species was reflected in the relatedness of the associated Symbiodinium (with A. lamarcki and A. grahamae sharing an identical Symbiodinium profile, and A. humilis and A. agaricites harbouring a related ITS2 sequence in their Symbiodinium profiles), corroborating the notion that brooding corals and their Symbiodinium are engaged in coevolutionary processes. CONCLUSIONS: Our findings support the hypothesis that the depth-related environmental gradient on reefs has played an important role in the diversification of the genus Agaricia and their associated Symbiodinium, resulting in a genetic segregation between coral host-symbiont communities at shallow and mesophotic depths. SN - 1471-2148 UR - https://www.unboundmedicine.com/medline/citation/24059868/Sharing_the_slope:_depth_partitioning_of_agariciid_corals_and_associated_Symbiodinium_across_shallow_and_mesophotic_habitats__2_60_m__on_a_Caribbean_reef_ L2 - https://bmcevolbiol.biomedcentral.com/articles/10.1186/1471-2148-13-205 DB - PRIME DP - Unbound Medicine ER -