Tags

Type your tag names separated by a space and hit enter

Antibody induction therapy for lung transplant recipients.

Abstract

BACKGROUND

Lung transplantation has become a valuable and well-accepted treatment option for most end-stage lung diseases. Lung transplant recipients are at risk of transplanted organ rejection, and life-long immunosuppression is necessary. Clear evidence is essential to identify an optimal, safe and effective immunosuppressive treatment strategy for lung transplant recipients. Consensus has not yet been achieved concerning use of immunosuppressive antibodies against T-cells for induction following lung transplantation.

OBJECTIVES

We aimed to assess the benefits and harms of immunosuppressive T-cell antibody induction with ATG, ALG, IL-2RA, alemtuzumab, or muromonab-CD3 for lung transplant recipients.

SEARCH METHODS

We searched the Cochrane Renal Group's Specialised Register to 4 March 2013 through contact with the Trials Search Co-ordinator using search terms relevant to this review. Studies contained in the Specialised Register are identified through search strategies specifically designed for CENTRAL, MEDLINE and EMBASE.

SELECTION CRITERIA

We included all randomised controlled trials (RCTs) that compared immunosuppressive monoclonal and polyclonal T-cell antibody induction for lung transplant recipients. An inclusion criterion was that all participants must have received the same maintenance immunosuppressive therapy within each study.

DATA COLLECTION AND ANALYSIS

Three authors extracted data. We derived risk ratios (RR) for dichotomous data and mean differences (MD) for continuous data with 95% confidence intervals (CI). Methodological risk of bias was assessed using the Cochrane risk of bias tool and trial sequential analyses were undertaken to assess the risk of random errors (play of chance).

MAIN RESULTS

Our review included six RCTs (representing a total of 278 adult lung transplant recipients) that assessed the use of T-cell antibody induction. Evaluation of the included studies found all to be at high risk of bias.We conducted comparisons of polyclonal or monoclonal T-cell antibody induction versus no induction (3 studies, 140 participants); polyclonal T-cell antibody versus no induction (3 studies, 125 participants); interleukin-2 receptor antagonists (IL-2RA) versus no induction (1 study, 25 participants); polyclonal T-cell antibody versus muromonab-CD3 (1 study, 64 participants); and polyclonal T-cell antibody versus IL-2RA (3 studies, 100 participants). Overall we found no significant differences among interventions in terms of mortality, acute rejection, adverse effects, infection, pneumonia, cytomegalovirus infection, bronchiolitis obliterans syndrome, post-transplantation lymphoproliferative disease, or cancer.We found a significant outcome difference in one study that compared antithymocyte globulin versus muromonab-CD3 relating to adverse events (25/34 (74%) versus 12/30 (40%); RR 1.84, 95% CI 1.13 to 2.98). This suggested that antithymocyte globulin increased occurrence of adverse events. However, trial sequential analysis found that the required information size had not been reached, and the cumulative Z-curve did not cross the trial sequential alpha-spending monitoring boundaries.None of the studies reported quality of life or kidney injury. Trial sequential analyses indicated that none of the meta-analyses achieved required information sizes and the cumulative Z-curves did not cross the trial sequential alpha-spending monitoring boundaries, nor reached the area of futility.

AUTHORS' CONCLUSIONS

No clear benefits or harms associated with the use of T-cell antibody induction compared with no induction, or when different types of T-cell antibodies were compared were identified in this review. Few studies were identified that investigated use of antibodies against T-cells for induction after lung transplantation, and numbers of participants and outcomes were also limited. Assessment of the included studies found that all were at high risk of methodological bias.Further RCTs are needed to perform robust assessment of the benefits and harms of T-cell antibody induction for lung transplant recipients. Future studies should be designed and conducted according to methodologies to reduce risks of systematic error (bias) and random error (play of chance).

Authors+Show Affiliations

Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 7812, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, Copenhagen, Denmark, DK-2100.No affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Meta-Analysis
Research Support, Non-U.S. Gov't
Review
Systematic Review

Language

eng

PubMed ID

24282128

Citation

Penninga, Luit, et al. "Antibody Induction Therapy for Lung Transplant Recipients." The Cochrane Database of Systematic Reviews, 2013, p. CD008927.
Penninga L, Møller CH, Penninga EI, et al. Antibody induction therapy for lung transplant recipients. Cochrane Database Syst Rev. 2013.
Penninga, L., Møller, C. H., Penninga, E. I., Iversen, M., Gluud, C., & Steinbrüchel, D. A. (2013). Antibody induction therapy for lung transplant recipients. The Cochrane Database of Systematic Reviews, (11), CD008927. https://doi.org/10.1002/14651858.CD008927.pub2
Penninga L, et al. Antibody Induction Therapy for Lung Transplant Recipients. Cochrane Database Syst Rev. 2013 Nov 27;(11)CD008927. PubMed PMID: 24282128.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Antibody induction therapy for lung transplant recipients. AU - Penninga,Luit, AU - Møller,Christian H, AU - Penninga,Elisabeth I, AU - Iversen,Martin, AU - Gluud,Christian, AU - Steinbrüchel,Daniel A, Y1 - 2013/11/27/ PY - 2013/11/28/entrez PY - 2013/11/28/pubmed PY - 2014/5/21/medline SP - CD008927 EP - CD008927 JF - The Cochrane database of systematic reviews JO - Cochrane Database Syst Rev IS - 11 N2 - BACKGROUND: Lung transplantation has become a valuable and well-accepted treatment option for most end-stage lung diseases. Lung transplant recipients are at risk of transplanted organ rejection, and life-long immunosuppression is necessary. Clear evidence is essential to identify an optimal, safe and effective immunosuppressive treatment strategy for lung transplant recipients. Consensus has not yet been achieved concerning use of immunosuppressive antibodies against T-cells for induction following lung transplantation. OBJECTIVES: We aimed to assess the benefits and harms of immunosuppressive T-cell antibody induction with ATG, ALG, IL-2RA, alemtuzumab, or muromonab-CD3 for lung transplant recipients. SEARCH METHODS: We searched the Cochrane Renal Group's Specialised Register to 4 March 2013 through contact with the Trials Search Co-ordinator using search terms relevant to this review. Studies contained in the Specialised Register are identified through search strategies specifically designed for CENTRAL, MEDLINE and EMBASE. SELECTION CRITERIA: We included all randomised controlled trials (RCTs) that compared immunosuppressive monoclonal and polyclonal T-cell antibody induction for lung transplant recipients. An inclusion criterion was that all participants must have received the same maintenance immunosuppressive therapy within each study. DATA COLLECTION AND ANALYSIS: Three authors extracted data. We derived risk ratios (RR) for dichotomous data and mean differences (MD) for continuous data with 95% confidence intervals (CI). Methodological risk of bias was assessed using the Cochrane risk of bias tool and trial sequential analyses were undertaken to assess the risk of random errors (play of chance). MAIN RESULTS: Our review included six RCTs (representing a total of 278 adult lung transplant recipients) that assessed the use of T-cell antibody induction. Evaluation of the included studies found all to be at high risk of bias.We conducted comparisons of polyclonal or monoclonal T-cell antibody induction versus no induction (3 studies, 140 participants); polyclonal T-cell antibody versus no induction (3 studies, 125 participants); interleukin-2 receptor antagonists (IL-2RA) versus no induction (1 study, 25 participants); polyclonal T-cell antibody versus muromonab-CD3 (1 study, 64 participants); and polyclonal T-cell antibody versus IL-2RA (3 studies, 100 participants). Overall we found no significant differences among interventions in terms of mortality, acute rejection, adverse effects, infection, pneumonia, cytomegalovirus infection, bronchiolitis obliterans syndrome, post-transplantation lymphoproliferative disease, or cancer.We found a significant outcome difference in one study that compared antithymocyte globulin versus muromonab-CD3 relating to adverse events (25/34 (74%) versus 12/30 (40%); RR 1.84, 95% CI 1.13 to 2.98). This suggested that antithymocyte globulin increased occurrence of adverse events. However, trial sequential analysis found that the required information size had not been reached, and the cumulative Z-curve did not cross the trial sequential alpha-spending monitoring boundaries.None of the studies reported quality of life or kidney injury. Trial sequential analyses indicated that none of the meta-analyses achieved required information sizes and the cumulative Z-curves did not cross the trial sequential alpha-spending monitoring boundaries, nor reached the area of futility. AUTHORS' CONCLUSIONS: No clear benefits or harms associated with the use of T-cell antibody induction compared with no induction, or when different types of T-cell antibodies were compared were identified in this review. Few studies were identified that investigated use of antibodies against T-cells for induction after lung transplantation, and numbers of participants and outcomes were also limited. Assessment of the included studies found that all were at high risk of methodological bias.Further RCTs are needed to perform robust assessment of the benefits and harms of T-cell antibody induction for lung transplant recipients. Future studies should be designed and conducted according to methodologies to reduce risks of systematic error (bias) and random error (play of chance). SN - 1469-493X UR - https://www.unboundmedicine.com/medline/citation/24282128/Antibody_induction_therapy_for_lung_transplant_recipients_ L2 - https://doi.org/10.1002/14651858.CD008927.pub2 DB - PRIME DP - Unbound Medicine ER -