Tags

Type your tag names separated by a space and hit enter

De novo pyrimidine biosynthesis in the oomycete plant pathogen Phytophthora infestans.
Gene. 2014 Mar 10; 537(2):312-21.GENE

Abstract

The oomycete Phytophthora infestans, causal agent of the tomato and potato late blight, generates important economic and environmental losses worldwide. As current control strategies are becoming less effective, there is a need for studies on oomycete metabolism to help identify promising and more effective targets for chemical control. The pyrimidine pathways are attractive metabolic targets to combat tumors, virus and parasitic diseases but have not yet been studied in Phytophthora. Pyrimidines are involved in several critical cellular processes and play structural, metabolic and regulatory functions. Here, we used genomic and transcriptomic information to survey the pyrimidine metabolism during the P. infestans life cycle. After assessing the putative gene machinery for pyrimidine salvage and de novo synthesis, we inferred genealogies for each enzymatic domain in the latter pathway, which displayed a mosaic origin. The last two enzymes of the pathway, orotate phosphoribosyltransferase and orotidine-5-monophosphate decarboxylase, are fused in a multi-domain enzyme and are duplicated in some P. infestans strains. Two splice variants of the third gene (dihydroorotase) were identified, one of them encoding a premature stop codon generating a non-functional truncated protein. Relative expression profiles of pyrimidine biosynthesis genes were evaluated by qRT-PCR during infection in Solanum phureja. The third and fifth genes involved in this pathway showed high up-regulation during biotrophic stages and down-regulation during necrotrophy, whereas the uracil phosphoribosyl transferase gene involved in pyrimidine salvage showed the inverse behavior. These findings suggest the importance of de novo pyrimidine biosynthesis during the fast replicative early infection stages and highlight the dynamics of the metabolism associated with the hemibiotrophic life style of pathogen.

Authors+Show Affiliations

Laboratory of Mycology and Plant Pathology, Universidad de los Andes, Carrera 1 # 18-10, Edificio J-205, Bogotá DC, Colombia; Grupo de Investigaciones en Bioquímica y Biología Molecular de Parásitos, Universidad de los Andes, Carrera 1 # 18-10, Edificio M-301, Bogotá DC, Colombia.Laboratory of Mycology and Plant Pathology, Universidad de los Andes, Carrera 1 # 18-10, Edificio J-205, Bogotá DC, Colombia; Grupo de Investigaciones en Bioquímica y Biología Molecular de Parásitos, Universidad de los Andes, Carrera 1 # 18-10, Edificio M-301, Bogotá DC, Colombia.Grupo de Investigaciones en Bioquímica y Biología Molecular de Parásitos, Universidad de los Andes, Carrera 1 # 18-10, Edificio M-301, Bogotá DC, Colombia.Laboratory of Mycology and Plant Pathology, Universidad de los Andes, Carrera 1 # 18-10, Edificio J-205, Bogotá DC, Colombia; Grupo de Investigaciones en Bioquímica y Biología Molecular de Parásitos, Universidad de los Andes, Carrera 1 # 18-10, Edificio M-301, Bogotá DC, Colombia.Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, USA.Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, USA.Laboratory of Mycology and Plant Pathology, Universidad de los Andes, Carrera 1 # 18-10, Edificio J-205, Bogotá DC, Colombia.Grupo de Investigaciones en Bioquímica y Biología Molecular de Parásitos, Universidad de los Andes, Carrera 1 # 18-10, Edificio M-301, Bogotá DC, Colombia.Laboratory of Mycology and Plant Pathology, Universidad de los Andes, Carrera 1 # 18-10, Edificio J-205, Bogotá DC, Colombia. Electronic address: srestrep@uniandes.edu.co.

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

24361203

Citation

García-Bayona, Leonor, et al. "De Novo Pyrimidine Biosynthesis in the Oomycete Plant Pathogen Phytophthora Infestans." Gene, vol. 537, no. 2, 2014, pp. 312-21.
García-Bayona L, Garavito MF, Lozano GL, et al. De novo pyrimidine biosynthesis in the oomycete plant pathogen Phytophthora infestans. Gene. 2014;537(2):312-21.
García-Bayona, L., Garavito, M. F., Lozano, G. L., Vasquez, J. J., Myers, K., Fry, W. E., Bernal, A., Zimmermann, B. H., & Restrepo, S. (2014). De novo pyrimidine biosynthesis in the oomycete plant pathogen Phytophthora infestans. Gene, 537(2), 312-21. https://doi.org/10.1016/j.gene.2013.12.009
García-Bayona L, et al. De Novo Pyrimidine Biosynthesis in the Oomycete Plant Pathogen Phytophthora Infestans. Gene. 2014 Mar 10;537(2):312-21. PubMed PMID: 24361203.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - De novo pyrimidine biosynthesis in the oomycete plant pathogen Phytophthora infestans. AU - García-Bayona,Leonor, AU - Garavito,Manuel F, AU - Lozano,Gabriel L, AU - Vasquez,Juan J, AU - Myers,Kevin, AU - Fry,William E, AU - Bernal,Adriana, AU - Zimmermann,Barbara H, AU - Restrepo,Silvia, Y1 - 2013/12/18/ PY - 2013/07/26/received PY - 2013/11/21/revised PY - 2013/12/04/accepted PY - 2013/12/24/entrez PY - 2013/12/24/pubmed PY - 2014/6/25/medline KW - 5-phosphoribosyl-1-pyrophosphate KW - ATCase KW - Alternative splicing; KW - CPSaseII KW - DHODase KW - DHOase KW - Horizontal gene transfer; KW - ODCase KW - OPRTase KW - ORF KW - Oomycetes KW - PRPP KW - Phytophthora; KW - Pyrimidine metabolism; KW - UMP KW - UMPase KW - UPRTase KW - aspartate transcarbamylase KW - carbamoyl phosphate synthetase II KW - dihydroorotase KW - dihydroorotate dehydrogenase KW - hours post inoculation KW - hpi KW - open reading frame KW - orotate phosphoribosyltransferase KW - orotidine-5-monophosphate decarboxylase KW - qRT-PCR KW - quantitative reverse transcription PCR KW - uracil phosphoribosyltransferase KW - uridine monophosphate KW - uridine monophosphate synthetase SP - 312 EP - 21 JF - Gene JO - Gene VL - 537 IS - 2 N2 - The oomycete Phytophthora infestans, causal agent of the tomato and potato late blight, generates important economic and environmental losses worldwide. As current control strategies are becoming less effective, there is a need for studies on oomycete metabolism to help identify promising and more effective targets for chemical control. The pyrimidine pathways are attractive metabolic targets to combat tumors, virus and parasitic diseases but have not yet been studied in Phytophthora. Pyrimidines are involved in several critical cellular processes and play structural, metabolic and regulatory functions. Here, we used genomic and transcriptomic information to survey the pyrimidine metabolism during the P. infestans life cycle. After assessing the putative gene machinery for pyrimidine salvage and de novo synthesis, we inferred genealogies for each enzymatic domain in the latter pathway, which displayed a mosaic origin. The last two enzymes of the pathway, orotate phosphoribosyltransferase and orotidine-5-monophosphate decarboxylase, are fused in a multi-domain enzyme and are duplicated in some P. infestans strains. Two splice variants of the third gene (dihydroorotase) were identified, one of them encoding a premature stop codon generating a non-functional truncated protein. Relative expression profiles of pyrimidine biosynthesis genes were evaluated by qRT-PCR during infection in Solanum phureja. The third and fifth genes involved in this pathway showed high up-regulation during biotrophic stages and down-regulation during necrotrophy, whereas the uracil phosphoribosyl transferase gene involved in pyrimidine salvage showed the inverse behavior. These findings suggest the importance of de novo pyrimidine biosynthesis during the fast replicative early infection stages and highlight the dynamics of the metabolism associated with the hemibiotrophic life style of pathogen. SN - 1879-0038 UR - https://www.unboundmedicine.com/medline/citation/24361203/De_novo_pyrimidine_biosynthesis_in_the_oomycete_plant_pathogen_Phytophthora_infestans_ DB - PRIME DP - Unbound Medicine ER -