Abstract
BACKGROUND/PURPOSE
Dietary fat content is a primary factor associated with the increase in global obesity rates. There is a delay in achieving fat balance following exposure to a high-fat (HF) diet (≥ 40% of total energy from fat) and fat balance is closely linked to energy balance. Exercise has been shown to improve this rate of adaptation to a HF diet. Recently, however, the role of dietary fatty acid composition on energy and macronutrient balance has come into question.
METHODS
We chose studies that compared monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), and saturated fatty acids (SFA). We have reviewed studies that measured diet-induced thermogenesis (DIT), energy expenditure (EE), or fat oxidation (FOx) in response to a HF meal challenge, or long-term dietary intervention comparing these fatty acids.
RESULTS
While single-meal studies show that SFA induce lower DIT and FOx compared to unsaturated fats, the effect of the degree of unsaturation (MUFA vs. PUFA) appears to yet be determined. Long-term dietary interventions also support the notion that unsaturated fats induce greater EE, DIT, and/or FOx versus SFA and that a high MUFA diet induces more weight loss compared to a high SFA diet. Sex and BMI status also affect the metabolic responses to different fatty acids; however, more research in these areas is warranted.
CONCLUSION
SFA are likely more obesigenic than MUFA, and PUFA. The unsaturated fats appear to be more metabolically beneficial, specifically MUFA ≥ PUFA > SFA, as evidenced by the higher DIT and FOx following HF meals or diets.
TY - JOUR
T1 - Effect of dietary fatty acid composition on substrate utilization and body weight maintenance in humans.
AU - Krishnan,Sridevi,
AU - Cooper,Jamie A,
Y1 - 2013/12/22/
PY - 2013/07/17/received
PY - 2013/11/30/accepted
PY - 2013/12/24/entrez
PY - 2013/12/24/pubmed
PY - 2015/2/13/medline
SP - 691
EP - 710
JF - European journal of nutrition
JO - Eur J Nutr
VL - 53
IS - 3
N2 - BACKGROUND/PURPOSE: Dietary fat content is a primary factor associated with the increase in global obesity rates. There is a delay in achieving fat balance following exposure to a high-fat (HF) diet (≥ 40% of total energy from fat) and fat balance is closely linked to energy balance. Exercise has been shown to improve this rate of adaptation to a HF diet. Recently, however, the role of dietary fatty acid composition on energy and macronutrient balance has come into question. METHODS: We chose studies that compared monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), and saturated fatty acids (SFA). We have reviewed studies that measured diet-induced thermogenesis (DIT), energy expenditure (EE), or fat oxidation (FOx) in response to a HF meal challenge, or long-term dietary intervention comparing these fatty acids. RESULTS: While single-meal studies show that SFA induce lower DIT and FOx compared to unsaturated fats, the effect of the degree of unsaturation (MUFA vs. PUFA) appears to yet be determined. Long-term dietary interventions also support the notion that unsaturated fats induce greater EE, DIT, and/or FOx versus SFA and that a high MUFA diet induces more weight loss compared to a high SFA diet. Sex and BMI status also affect the metabolic responses to different fatty acids; however, more research in these areas is warranted. CONCLUSION: SFA are likely more obesigenic than MUFA, and PUFA. The unsaturated fats appear to be more metabolically beneficial, specifically MUFA ≥ PUFA > SFA, as evidenced by the higher DIT and FOx following HF meals or diets.
SN - 1436-6215
UR - https://www.unboundmedicine.com/medline/citation/24363161/Effect_of_dietary_fatty_acid_composition_on_substrate_utilization_and_body_weight_maintenance_in_humans_
L2 - https://dx.doi.org/10.1007/s00394-013-0638-z
DB - PRIME
DP - Unbound Medicine
ER -