Tags

Type your tag names separated by a space and hit enter

Metabolic activation of the indoloquinazoline alkaloids evodiamine and rutaecarpine by human liver microsomes: dehydrogenation and inactivation of cytochrome P450 3A4.
Drug Metab Dispos. 2014 Jun; 42(6):1044-54.DM

Abstract

Evodiamine and rutaecarpine are the main active indoloquinazoline alkaloids of the herbal medicine Evodia rutaecarpa, which is widely used for the treatment of hypertension, abdominal pain, angina pectoris, gastrointestinal disorder, and headache. Immunosuppressive effects and acute toxicity were reported in mice treated with evodiamine and rutaecarpine. Although the mechanism remains unknown, it is proposed that metabolic activation of the indoloquinazoline alkaloids and subsequent covalent binding of reactive metabolites to cellular proteins play a causative role. Liquid chromatography-tandem mass spectrometry analysis of incubations containing evodiamine and NADPH-supplemented microsomes in the presence of glutathione (GSH) revealed formation of a major GSH conjugate which was subsequently indentified as a benzylic thioether adduct on the C-8 position of evodiamine by NMR analysis. Several other GSH conjugates were also detected, including conjugates of oxidized and demethylated metabolites of evodiamine. Similar GSH conjugates were formed in incubations with rutaecarpine. These findings are consistent with a bioactivation sequence involving initial cytochrome P450-catalyzed dehydrogenation of the 3-alkylindole moiety in evodiamine and rutaecarpine to an electrophile 3-methyleneindolenine. Formation of the evodiamine and rutaecarpine GSH conjugates was primarily catalyzed by heterologously expressed recombinant CYP3A4 and, to a lesser extent, CYP1A2 and CYP2D6, respectively. It was found that the 3-methyleneindolenine or another reactive intermediate was a mechanism-based inactivator of CYP3A4, with inactivation parameters KI = 29 µM and kinact = 0.029 minute(-1), respectively. In summary, these findings are of significance in understanding the bioactivation mechanisms of indoloquinazoline alkaloids, and dehydrogenation of evodiamine and rutaecarpine may cause toxicities through formation of electrophilic intermediates and lead to drug-drug interactions mainly via CYP3A4 inactivation.

Authors+Show Affiliations

Drug Metabolism, Non-Clinical Safety (B.W., L.L., D.J.M.) and Discovery Chemistry (V.R.), Hoffmann-La Roche, Nutley, New Jersey.No affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article

Language

eng

PubMed ID

24696463

Citation

Wen, Bo, et al. "Metabolic Activation of the Indoloquinazoline Alkaloids Evodiamine and Rutaecarpine By Human Liver Microsomes: Dehydrogenation and Inactivation of Cytochrome P450 3A4." Drug Metabolism and Disposition: the Biological Fate of Chemicals, vol. 42, no. 6, 2014, pp. 1044-54.
Wen B, Roongta V, Liu L, et al. Metabolic activation of the indoloquinazoline alkaloids evodiamine and rutaecarpine by human liver microsomes: dehydrogenation and inactivation of cytochrome P450 3A4. Drug Metab Dispos. 2014;42(6):1044-54.
Wen, B., Roongta, V., Liu, L., & Moore, D. J. (2014). Metabolic activation of the indoloquinazoline alkaloids evodiamine and rutaecarpine by human liver microsomes: dehydrogenation and inactivation of cytochrome P450 3A4. Drug Metabolism and Disposition: the Biological Fate of Chemicals, 42(6), 1044-54. https://doi.org/10.1124/dmd.114.057414
Wen B, et al. Metabolic Activation of the Indoloquinazoline Alkaloids Evodiamine and Rutaecarpine By Human Liver Microsomes: Dehydrogenation and Inactivation of Cytochrome P450 3A4. Drug Metab Dispos. 2014;42(6):1044-54. PubMed PMID: 24696463.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Metabolic activation of the indoloquinazoline alkaloids evodiamine and rutaecarpine by human liver microsomes: dehydrogenation and inactivation of cytochrome P450 3A4. AU - Wen,Bo, AU - Roongta,Vikram, AU - Liu,Liling, AU - Moore,David J, Y1 - 2014/04/02/ PY - 2014/4/4/entrez PY - 2014/4/4/pubmed PY - 2015/1/27/medline SP - 1044 EP - 54 JF - Drug metabolism and disposition: the biological fate of chemicals JO - Drug Metab Dispos VL - 42 IS - 6 N2 - Evodiamine and rutaecarpine are the main active indoloquinazoline alkaloids of the herbal medicine Evodia rutaecarpa, which is widely used for the treatment of hypertension, abdominal pain, angina pectoris, gastrointestinal disorder, and headache. Immunosuppressive effects and acute toxicity were reported in mice treated with evodiamine and rutaecarpine. Although the mechanism remains unknown, it is proposed that metabolic activation of the indoloquinazoline alkaloids and subsequent covalent binding of reactive metabolites to cellular proteins play a causative role. Liquid chromatography-tandem mass spectrometry analysis of incubations containing evodiamine and NADPH-supplemented microsomes in the presence of glutathione (GSH) revealed formation of a major GSH conjugate which was subsequently indentified as a benzylic thioether adduct on the C-8 position of evodiamine by NMR analysis. Several other GSH conjugates were also detected, including conjugates of oxidized and demethylated metabolites of evodiamine. Similar GSH conjugates were formed in incubations with rutaecarpine. These findings are consistent with a bioactivation sequence involving initial cytochrome P450-catalyzed dehydrogenation of the 3-alkylindole moiety in evodiamine and rutaecarpine to an electrophile 3-methyleneindolenine. Formation of the evodiamine and rutaecarpine GSH conjugates was primarily catalyzed by heterologously expressed recombinant CYP3A4 and, to a lesser extent, CYP1A2 and CYP2D6, respectively. It was found that the 3-methyleneindolenine or another reactive intermediate was a mechanism-based inactivator of CYP3A4, with inactivation parameters KI = 29 µM and kinact = 0.029 minute(-1), respectively. In summary, these findings are of significance in understanding the bioactivation mechanisms of indoloquinazoline alkaloids, and dehydrogenation of evodiamine and rutaecarpine may cause toxicities through formation of electrophilic intermediates and lead to drug-drug interactions mainly via CYP3A4 inactivation. SN - 1521-009X UR - https://www.unboundmedicine.com/medline/citation/24696463/Metabolic_activation_of_the_indoloquinazoline_alkaloids_evodiamine_and_rutaecarpine_by_human_liver_microsomes:_dehydrogenation_and_inactivation_of_cytochrome_P450_3A4_ DB - PRIME DP - Unbound Medicine ER -