Tags

Type your tag names separated by a space and hit enter

Spreading of β-lactam resistance gene (mecA) and methicillin-resistant Staphylococcus aureus through municipal and swine slaughterhouse wastewaters.
Water Res. 2014 Nov 01; 64:288-295.WR

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) is a potential zoonotic agent. Municipal wastewater treatment plants (WWTPs) can be reservoirs for MRSA dissemination. It is unclear, however, whether MRSA and its β-lactam resistance gene (mecA) can be spread from WWTPs that treat the wastewater of swine auction markets. The aims of the study were to compare (1) the abundance of the mecA gene in one municipal (M-) and one swine (S-) WWTP and (2) the genotypic and phenotypic characteristics of MRSA isolates from these two types of WWTPs. The concentrations of mecA gene from 96 wastewater samples were quantified using real-time quantitative polymerase chain reaction (real-time qPCR). One hundred and thirteen MRSA isolates were recovered and were characterized by antimicrobial susceptibility testing, minimum inhibitory concentrations (MICs), and staphylococcal cassette chromosome mec (SCCmec) typing. The mecA gene could be detected in all the wastewater samples. A high abundance of recovered mecA gene (2.6 × 10(1) to 1.9 × 10(4) gene copies μg(-1) of total DNA) in swine slaughterhouse wastewater implied a correspondingly high transferring/receiving potential. All MRSA isolates were multidrug resistant (MDR) and showed high MICs to different antimicrobials. The M-WWTP MRSA isolates harbored SCCmec II-IV and VII, whereas those from the S-WWTP harbored SCCmec V and IX. In conclusion, wastewater from swine slaughterhouses can make these slaughterhouses potential hotspots for the dissemination of mecA gene and MRSA, and the high MICs of MRSA from both WWTP origins may pose a health risk not only to workers but also to the general public.

Authors+Show Affiliations

School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 106, Taiwan.School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 106, Taiwan. Electronic address: chouchin@ntu.edu.tw.

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

25086302

Citation

Wan, Min Tao, and Chin Cheng Chou. "Spreading of Β-lactam Resistance Gene (mecA) and Methicillin-resistant Staphylococcus Aureus Through Municipal and Swine Slaughterhouse Wastewaters." Water Research, vol. 64, 2014, pp. 288-295.
Wan MT, Chou CC. Spreading of β-lactam resistance gene (mecA) and methicillin-resistant Staphylococcus aureus through municipal and swine slaughterhouse wastewaters. Water Res. 2014;64:288-295.
Wan, M. T., & Chou, C. C. (2014). Spreading of β-lactam resistance gene (mecA) and methicillin-resistant Staphylococcus aureus through municipal and swine slaughterhouse wastewaters. Water Research, 64, 288-295. https://doi.org/10.1016/j.watres.2014.07.014
Wan MT, Chou CC. Spreading of Β-lactam Resistance Gene (mecA) and Methicillin-resistant Staphylococcus Aureus Through Municipal and Swine Slaughterhouse Wastewaters. Water Res. 2014 Nov 1;64:288-295. PubMed PMID: 25086302.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Spreading of β-lactam resistance gene (mecA) and methicillin-resistant Staphylococcus aureus through municipal and swine slaughterhouse wastewaters. AU - Wan,Min Tao, AU - Chou,Chin Cheng, Y1 - 2014/07/17/ PY - 2013/11/11/received PY - 2014/06/30/revised PY - 2014/07/09/accepted PY - 2014/8/3/entrez PY - 2014/8/3/pubmed PY - 2015/12/15/medline KW - Methicillin-resistant Staphylococcus aureus KW - Municipal KW - Swine KW - Wastewater KW - mecA gene SP - 288 EP - 295 JF - Water research JO - Water Res. VL - 64 N2 - Methicillin-resistant Staphylococcus aureus (MRSA) is a potential zoonotic agent. Municipal wastewater treatment plants (WWTPs) can be reservoirs for MRSA dissemination. It is unclear, however, whether MRSA and its β-lactam resistance gene (mecA) can be spread from WWTPs that treat the wastewater of swine auction markets. The aims of the study were to compare (1) the abundance of the mecA gene in one municipal (M-) and one swine (S-) WWTP and (2) the genotypic and phenotypic characteristics of MRSA isolates from these two types of WWTPs. The concentrations of mecA gene from 96 wastewater samples were quantified using real-time quantitative polymerase chain reaction (real-time qPCR). One hundred and thirteen MRSA isolates were recovered and were characterized by antimicrobial susceptibility testing, minimum inhibitory concentrations (MICs), and staphylococcal cassette chromosome mec (SCCmec) typing. The mecA gene could be detected in all the wastewater samples. A high abundance of recovered mecA gene (2.6 × 10(1) to 1.9 × 10(4) gene copies μg(-1) of total DNA) in swine slaughterhouse wastewater implied a correspondingly high transferring/receiving potential. All MRSA isolates were multidrug resistant (MDR) and showed high MICs to different antimicrobials. The M-WWTP MRSA isolates harbored SCCmec II-IV and VII, whereas those from the S-WWTP harbored SCCmec V and IX. In conclusion, wastewater from swine slaughterhouses can make these slaughterhouses potential hotspots for the dissemination of mecA gene and MRSA, and the high MICs of MRSA from both WWTP origins may pose a health risk not only to workers but also to the general public. SN - 1879-2448 UR - https://www.unboundmedicine.com/medline/citation/25086302/Spreading_of_β_lactam_resistance_gene__mecA__and_methicillin_resistant_Staphylococcus_aureus_through_municipal_and_swine_slaughterhouse_wastewaters_ L2 - https://linkinghub.elsevier.com/retrieve/pii/S0043-1354(14)00510-7 DB - PRIME DP - Unbound Medicine ER -