Tags

Type your tag names separated by a space and hit enter

Tuning resistive switching characteristics of tantalum oxide memristors through Si doping.
ACS Nano 2014; 8(10):10262-9AN

Abstract

An oxide memristor device changes its internal state according to the history of the applied voltage and current. The principle of resistive switching (RS) is based on ion transport (e.g., oxygen vacancy redistribution). To date, devices with bi-, triple-, or even quadruple-layered structures have been studied to achieve the desired switching behavior through device structure optimization. In contrast, the device performance can also be tuned through fundamental atomic-level design of the switching materials, which can directly affect the dynamic transport of ions and lead to optimized switching characteristics. Here, we show that doping tantalum oxide memristors with silicon atoms can facilitate oxygen vacancy formation and transport in the switching layer with adjustable ion hopping distance and drift velocity. The devices show larger dynamic ranges with easier access to the intermediate states while maintaining the extremely high cycling endurance (>10(10) set and reset) and are well-suited for neuromorphic computing applications. As an example, we demonstrate different flavors of spike-timing-dependent plasticity in this memristor system. We further provide a characterization methodology to quantitatively estimate the effective hopping distance of the oxygen vacancies. The experimental results are confirmed through detailed ab initio calculations which reveal the roles of dopants and provide design methodology for further optimization of the RS behavior.

Authors+Show Affiliations

Department of Electrical Engineering and Computer Science, University of Michigan , Ann Arbor, Michigan 48109, United States.No affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.

Language

eng

PubMed ID

25255038

Citation

Kim, Sungho, et al. "Tuning Resistive Switching Characteristics of Tantalum Oxide Memristors Through Si Doping." ACS Nano, vol. 8, no. 10, 2014, pp. 10262-9.
Kim S, Choi S, Lee J, et al. Tuning resistive switching characteristics of tantalum oxide memristors through Si doping. ACS Nano. 2014;8(10):10262-9.
Kim, S., Choi, S., Lee, J., & Lu, W. D. (2014). Tuning resistive switching characteristics of tantalum oxide memristors through Si doping. ACS Nano, 8(10), pp. 10262-9. doi:10.1021/nn503464q.
Kim S, et al. Tuning Resistive Switching Characteristics of Tantalum Oxide Memristors Through Si Doping. ACS Nano. 2014 Oct 28;8(10):10262-9. PubMed PMID: 25255038.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Tuning resistive switching characteristics of tantalum oxide memristors through Si doping. AU - Kim,Sungho, AU - Choi,ShinHyun, AU - Lee,Jihang, AU - Lu,Wei D, Y1 - 2014/09/29/ PY - 2014/9/26/entrez PY - 2014/9/26/pubmed PY - 2014/9/26/medline KW - dopant KW - hopping KW - memristor KW - oxygen vacancy KW - resistive switching KW - tantalum oxide SP - 10262 EP - 9 JF - ACS nano JO - ACS Nano VL - 8 IS - 10 N2 - An oxide memristor device changes its internal state according to the history of the applied voltage and current. The principle of resistive switching (RS) is based on ion transport (e.g., oxygen vacancy redistribution). To date, devices with bi-, triple-, or even quadruple-layered structures have been studied to achieve the desired switching behavior through device structure optimization. In contrast, the device performance can also be tuned through fundamental atomic-level design of the switching materials, which can directly affect the dynamic transport of ions and lead to optimized switching characteristics. Here, we show that doping tantalum oxide memristors with silicon atoms can facilitate oxygen vacancy formation and transport in the switching layer with adjustable ion hopping distance and drift velocity. The devices show larger dynamic ranges with easier access to the intermediate states while maintaining the extremely high cycling endurance (>10(10) set and reset) and are well-suited for neuromorphic computing applications. As an example, we demonstrate different flavors of spike-timing-dependent plasticity in this memristor system. We further provide a characterization methodology to quantitatively estimate the effective hopping distance of the oxygen vacancies. The experimental results are confirmed through detailed ab initio calculations which reveal the roles of dopants and provide design methodology for further optimization of the RS behavior. SN - 1936-086X UR - https://www.unboundmedicine.com/medline/citation/25255038/Tuning_resistive_switching_characteristics_of_tantalum_oxide_memristors_through_Si_doping_ L2 - https://dx.doi.org/10.1021/nn503464q DB - PRIME DP - Unbound Medicine ER -