Tags

Type your tag names separated by a space and hit enter

Somatostatin prevents lipopolysaccharide-induced neurodegeneration in the rat substantia nigra by inhibiting the activation of microglia.
Mol Med Rep. 2015 Jul; 12(1):1002-8.MM

Abstract

Somatostatin (SST) is a neuromodulator which is abundant throughout the central nervous system (CNS) and has a crucial role in neurodegenerative disorders. However, little is known about the effects and mechanisms of SST in dopaminergic (DA) neurons in the context of Parkinson's disease (PD). In the present study, a model of PD was generated by injecting lipopolysaccharide (LPS) into the substantia nigra (SN) of rats in order to investigate the effects of SST on LPS-induced degeneration of DA in vivo. Intramural injection of LPS resulted in a significant loss of DA neurons, while reduction of neuronal death by SST pretreatment was confirmed using immunohistochemical staining for tyrosine hydroxylase and Nissl. In parallel, immunohistochemical detection of OX-42 and hydroethidine staining were employed to determine the activation of microglia and production of reactive oxygen species (ROS), respectively. It was found that SST inhibited the LPS-induced microglial activity and ROS production. ELISA revealed a decreased production of pro-inflammatory mediators, including tumor necrosis factor-α, interleukin-1β and prostaglandin E2 when SST was administered prior to LPS treatment. Western blot analysis showed that LPS-induced expression of inducible nitric oxide synthase, cyclooxygenase-2 and nuclear factor κB (NF-κB) p-p65 was attenuated by administration of SST prior to LPS application. The results indicated that LPS-induced loss of nigral DA neurons was inhibited by SST and the observed effects of SST on neuroprotection were associated with suppression of microglial activation and the NF-κB pathway, ensuing decreases of neuroinflammation and oxidative stress. The present study therefore suggested that SST is beneficial for treating neurodegenerative diseases, such as PD, through inhibiting the activation of microglia.

Authors+Show Affiliations

Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China.Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China.Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China.Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China.Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China.Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China.Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China.Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China.

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

25777539

Citation

Bai, Lijuan, et al. "Somatostatin Prevents Lipopolysaccharide-induced Neurodegeneration in the Rat Substantia Nigra By Inhibiting the Activation of Microglia." Molecular Medicine Reports, vol. 12, no. 1, 2015, pp. 1002-8.
Bai L, Zhang X, Li X, et al. Somatostatin prevents lipopolysaccharide-induced neurodegeneration in the rat substantia nigra by inhibiting the activation of microglia. Mol Med Rep. 2015;12(1):1002-8.
Bai, L., Zhang, X., Li, X., Liu, N., Lou, F., Ma, H., Luo, X., & Ren, Y. (2015). Somatostatin prevents lipopolysaccharide-induced neurodegeneration in the rat substantia nigra by inhibiting the activation of microglia. Molecular Medicine Reports, 12(1), 1002-8. https://doi.org/10.3892/mmr.2015.3494
Bai L, et al. Somatostatin Prevents Lipopolysaccharide-induced Neurodegeneration in the Rat Substantia Nigra By Inhibiting the Activation of Microglia. Mol Med Rep. 2015;12(1):1002-8. PubMed PMID: 25777539.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Somatostatin prevents lipopolysaccharide-induced neurodegeneration in the rat substantia nigra by inhibiting the activation of microglia. AU - Bai,Lijuan, AU - Zhang,Xique, AU - Li,Xiaohong, AU - Liu,Na, AU - Lou,Fan, AU - Ma,Honglei, AU - Luo,Xiaoguang, AU - Ren,Yan, Y1 - 2015/03/13/ PY - 2014/05/21/received PY - 2015/01/30/accepted PY - 2015/3/18/entrez PY - 2015/3/18/pubmed PY - 2016/1/1/medline SP - 1002 EP - 8 JF - Molecular medicine reports JO - Mol Med Rep VL - 12 IS - 1 N2 - Somatostatin (SST) is a neuromodulator which is abundant throughout the central nervous system (CNS) and has a crucial role in neurodegenerative disorders. However, little is known about the effects and mechanisms of SST in dopaminergic (DA) neurons in the context of Parkinson's disease (PD). In the present study, a model of PD was generated by injecting lipopolysaccharide (LPS) into the substantia nigra (SN) of rats in order to investigate the effects of SST on LPS-induced degeneration of DA in vivo. Intramural injection of LPS resulted in a significant loss of DA neurons, while reduction of neuronal death by SST pretreatment was confirmed using immunohistochemical staining for tyrosine hydroxylase and Nissl. In parallel, immunohistochemical detection of OX-42 and hydroethidine staining were employed to determine the activation of microglia and production of reactive oxygen species (ROS), respectively. It was found that SST inhibited the LPS-induced microglial activity and ROS production. ELISA revealed a decreased production of pro-inflammatory mediators, including tumor necrosis factor-α, interleukin-1β and prostaglandin E2 when SST was administered prior to LPS treatment. Western blot analysis showed that LPS-induced expression of inducible nitric oxide synthase, cyclooxygenase-2 and nuclear factor κB (NF-κB) p-p65 was attenuated by administration of SST prior to LPS application. The results indicated that LPS-induced loss of nigral DA neurons was inhibited by SST and the observed effects of SST on neuroprotection were associated with suppression of microglial activation and the NF-κB pathway, ensuing decreases of neuroinflammation and oxidative stress. The present study therefore suggested that SST is beneficial for treating neurodegenerative diseases, such as PD, through inhibiting the activation of microglia. SN - 1791-3004 UR - https://www.unboundmedicine.com/medline/citation/25777539/Somatostatin_prevents_lipopolysaccharide_induced_neurodegeneration_in_the_rat_substantia_nigra_by_inhibiting_the_activation_of_microglia_ DB - PRIME DP - Unbound Medicine ER -