Tags

Type your tag names separated by a space and hit enter

Effects of Ultraviolet Germicidal Irradiation (UVGI) on N95 Respirator Filtration Performance and Structural Integrity.
J Occup Environ Hyg. 2015; 12(8):509-17.JO

Abstract

The ability to disinfect and reuse disposable N95 filtering facepiece respirators (FFRs) may be needed during a pandemic of an infectious respiratory disease such as influenza. Ultraviolet germicidal irradiation (UVGI) is one possible method for respirator disinfection. However, UV radiation degrades polymers, which presents the possibility that UVGI exposure could degrade the ability of a disposable respirator to protect the worker. To study this, we exposed both sides of material coupons and respirator straps from four models of N95 FFRs to UVGI doses from 120-950 J/cm(2). We then tested the particle penetration, flow resistance, and bursting strengths of the individual respirator coupon layers, and the breaking strength of the respirator straps. We found that UVGI exposure led to a small increase in particle penetration (up to 1.25%) and had little effect on the flow resistance. UVGI exposure had a more pronounced effect on the strengths of the respirator materials. At the higher UVGI doses, the strength of the layers of respirator material was substantially reduced (in some cases, by >90%). The changes in the strengths of the respirator materials varied considerably among the different models of respirators. UVGI had less of an effect on the respirator straps; a dose of 2360 J/cm(2) reduced the breaking strength of the straps by 20-51%. Our results suggest that UVGI could be used to effectively disinfect disposable respirators for reuse, but the maximum number of disinfection cycles will be limited by the respirator model and the UVGI dose required to inactivate the pathogen.

Authors+Show Affiliations

a Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention , Morgantown , West Virginia.No affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article

Language

eng

PubMed ID

25806411

Citation

Lindsley, William G., et al. "Effects of Ultraviolet Germicidal Irradiation (UVGI) On N95 Respirator Filtration Performance and Structural Integrity." Journal of Occupational and Environmental Hygiene, vol. 12, no. 8, 2015, pp. 509-17.
Lindsley WG, Martin SB, Thewlis RE, et al. Effects of Ultraviolet Germicidal Irradiation (UVGI) on N95 Respirator Filtration Performance and Structural Integrity. J Occup Environ Hyg. 2015;12(8):509-17.
Lindsley, W. G., Martin, S. B., Thewlis, R. E., Sarkisian, K., Nwoko, J. O., Mead, K. R., & Noti, J. D. (2015). Effects of Ultraviolet Germicidal Irradiation (UVGI) on N95 Respirator Filtration Performance and Structural Integrity. Journal of Occupational and Environmental Hygiene, 12(8), 509-17. https://doi.org/10.1080/15459624.2015.1018518
Lindsley WG, et al. Effects of Ultraviolet Germicidal Irradiation (UVGI) On N95 Respirator Filtration Performance and Structural Integrity. J Occup Environ Hyg. 2015;12(8):509-17. PubMed PMID: 25806411.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Effects of Ultraviolet Germicidal Irradiation (UVGI) on N95 Respirator Filtration Performance and Structural Integrity. AU - Lindsley,William G, AU - Martin,Stephen B,Jr AU - Thewlis,Robert E, AU - Sarkisian,Khachatur, AU - Nwoko,Julian O, AU - Mead,Kenneth R, AU - Noti,John D, PY - 2015/3/26/entrez PY - 2015/3/26/pubmed PY - 2016/4/23/medline KW - airborne transmission KW - disinfection KW - healthcare workers KW - respiratory infections/prevention KW - respiratory protective devices KW - ultraviolet light SP - 509 EP - 17 JF - Journal of occupational and environmental hygiene JO - J Occup Environ Hyg VL - 12 IS - 8 N2 - The ability to disinfect and reuse disposable N95 filtering facepiece respirators (FFRs) may be needed during a pandemic of an infectious respiratory disease such as influenza. Ultraviolet germicidal irradiation (UVGI) is one possible method for respirator disinfection. However, UV radiation degrades polymers, which presents the possibility that UVGI exposure could degrade the ability of a disposable respirator to protect the worker. To study this, we exposed both sides of material coupons and respirator straps from four models of N95 FFRs to UVGI doses from 120-950 J/cm(2). We then tested the particle penetration, flow resistance, and bursting strengths of the individual respirator coupon layers, and the breaking strength of the respirator straps. We found that UVGI exposure led to a small increase in particle penetration (up to 1.25%) and had little effect on the flow resistance. UVGI exposure had a more pronounced effect on the strengths of the respirator materials. At the higher UVGI doses, the strength of the layers of respirator material was substantially reduced (in some cases, by >90%). The changes in the strengths of the respirator materials varied considerably among the different models of respirators. UVGI had less of an effect on the respirator straps; a dose of 2360 J/cm(2) reduced the breaking strength of the straps by 20-51%. Our results suggest that UVGI could be used to effectively disinfect disposable respirators for reuse, but the maximum number of disinfection cycles will be limited by the respirator model and the UVGI dose required to inactivate the pathogen. SN - 1545-9632 UR - https://www.unboundmedicine.com/medline/citation/25806411/Effects_of_Ultraviolet_Germicidal_Irradiation__UVGI__on_N95_Respirator_Filtration_Performance_and_Structural_Integrity_ L2 - http://www.tandfonline.com/doi/full/10.1080/15459624.2015.1018518 DB - PRIME DP - Unbound Medicine ER -