Tags

Type your tag names separated by a space and hit enter

Histamine modulates contraction and cyclic nucleotides in cultured rat mesangial cells. Differential effects mediated by histamine H1 and H2 receptors.
J Clin Invest. 1985 May; 75(5):1679-89.JCI

Abstract

Histamine influences the glomerular microcirculation and modulates immune-inflammatory responses. In the rat kidney, histamine is synthesized by glomeruli and stimulates cyclic nucleotide production specifically in glomeruli. We investigated the in vitro effect of histamine on cyclic nucleotide accumulation in rat cultured glomerular mesangial and epithelial cells. Histamine stimulated cyclic AMP (cAMP) accumulation in cultured mesangial cells (64.0 +/- 22.1 to 511.4 +/- 86.6 pmol/mg protein, n = 9) but had no effect on cAMP accumulation in epithelial cells. This effect was dose-dependent and time-dependent. Stimulation of cAMP accumulation occurred in the range of 5 X 10(-6) M-10(-4) M histamine with a half maximal stimulatory effect of 2 X 10(-5) M. Initial stimulation was noted by 30 s, and maximum stimulation was observed at 5 min. The H2 antagonist cimetidine (10(-4) M) abolished the stimulatory effect of histamine (10(-4) M), while equimolar concentrations of the H1 antagonist diphenhydramine had no significant effect on cAMP accumulation. Moreover, the specific H2 agonist dimaprit, but not the H1 agonist 2-pyridylethylamine, stimulated cAMP accumulation. Histamine had no effect on cAMP accumulation in epithelial cells or on cyclic guanosine monophosphate accumulation in epithelial or mesangial cells. Since the in vivo infusion of histamine reduces ultrafiltration coefficient and since mesangial cell contraction is thought to be responsible for the reduction in the ultrafiltration coefficient, we examined the effect of histamine on the contractile property of mesangial cells. Histamine (5 X 10(-6)-10(-4) M) contracted mesangial cells, and the H1 antagonist diphenhydramine (10(-4) M) but not the H2 antagonist cimetidine (10(-4) M) prevented histamine (10(-4) M) induced contraction. In addition, the H1 agonist 2-pyridylethylamine, but not the H2 agonist dimaprit, contracted mesangial cells. Histamine and its specific agonists and antagonists induced contraction of isolated glomeruli as assessed by glomerular planar surface area in a manner parallel to their effect on mesangial cells. Cinnarizine (10(-5) M), a Ca++ channel blocker, or Ca++, Mg++-free medium prevented histamine (10(-4) M) induced mesangial cell and glomerular contraction. Thus, histamine enhances cAMP accumulation specifically in mesangial cells via an H2 receptor. In contrast, histamine contracts mesangial cells and glomeruli via an H1 receptor, an effect that is dependent on extracellular Ca++ entry. These findings show that histamine potentially influences intraglomerular hemodynamics via effects on mesangial cell contraction. Moreover, our findings considered with the in vivo observation that histamine reduces kf via and H1 receptor provide further support of the hypothesis that mesangial cell contraction regulates the glomerular capillary surface area available for filtration. Our studies also show that this contractile effect of histamine is dependent on extracellular calcium. The presence of a cAMP system sensitive to histamine may have major implications in the pathogenesis of inflammatory glomerulopathies. Mesangial cells possess characteristics similar to circulating and tissue immune effector cells, including lysosomal enzyme release, oxygen radical production, and release of a number of immunomodulatory factors. Histamine and cAMP have been shown to modulate such characteristics of inflammatory cells. It is therefore conceivable that histamine, via its interaction with H2 receptors and subsequent generation cAMP, may have profound effects on such properties of mesangial cells, suggesting that this autacoid may modulate not only glomerular hemodynamics but also immune, inflammatory responses within the glomerulus.

Authors+Show Affiliations

Veterans Administration Medical Center, Division of Nephrology, Department of Medicine, Cleveland, Ohio 44106, USA.No affiliation info available

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.

Language

eng

PubMed ID

2582001

Citation

Sedor, J R., and H E. Abboud. "Histamine Modulates Contraction and Cyclic Nucleotides in Cultured Rat Mesangial Cells. Differential Effects Mediated By Histamine H1 and H2 Receptors." The Journal of Clinical Investigation, vol. 75, no. 5, 1985, pp. 1679-89.
Sedor JR, Abboud HE. Histamine modulates contraction and cyclic nucleotides in cultured rat mesangial cells. Differential effects mediated by histamine H1 and H2 receptors. J Clin Invest. 1985;75(5):1679-89.
Sedor, J. R., & Abboud, H. E. (1985). Histamine modulates contraction and cyclic nucleotides in cultured rat mesangial cells. Differential effects mediated by histamine H1 and H2 receptors. The Journal of Clinical Investigation, 75(5), 1679-89.
Sedor JR, Abboud HE. Histamine Modulates Contraction and Cyclic Nucleotides in Cultured Rat Mesangial Cells. Differential Effects Mediated By Histamine H1 and H2 Receptors. J Clin Invest. 1985;75(5):1679-89. PubMed PMID: 2582001.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Histamine modulates contraction and cyclic nucleotides in cultured rat mesangial cells. Differential effects mediated by histamine H1 and H2 receptors. AU - Sedor,J R, AU - Abboud,H E, PY - 1985/5/1/pubmed PY - 1985/5/1/medline PY - 1985/5/1/entrez SP - 1679 EP - 89 JF - The Journal of clinical investigation JO - J Clin Invest VL - 75 IS - 5 N2 - Histamine influences the glomerular microcirculation and modulates immune-inflammatory responses. In the rat kidney, histamine is synthesized by glomeruli and stimulates cyclic nucleotide production specifically in glomeruli. We investigated the in vitro effect of histamine on cyclic nucleotide accumulation in rat cultured glomerular mesangial and epithelial cells. Histamine stimulated cyclic AMP (cAMP) accumulation in cultured mesangial cells (64.0 +/- 22.1 to 511.4 +/- 86.6 pmol/mg protein, n = 9) but had no effect on cAMP accumulation in epithelial cells. This effect was dose-dependent and time-dependent. Stimulation of cAMP accumulation occurred in the range of 5 X 10(-6) M-10(-4) M histamine with a half maximal stimulatory effect of 2 X 10(-5) M. Initial stimulation was noted by 30 s, and maximum stimulation was observed at 5 min. The H2 antagonist cimetidine (10(-4) M) abolished the stimulatory effect of histamine (10(-4) M), while equimolar concentrations of the H1 antagonist diphenhydramine had no significant effect on cAMP accumulation. Moreover, the specific H2 agonist dimaprit, but not the H1 agonist 2-pyridylethylamine, stimulated cAMP accumulation. Histamine had no effect on cAMP accumulation in epithelial cells or on cyclic guanosine monophosphate accumulation in epithelial or mesangial cells. Since the in vivo infusion of histamine reduces ultrafiltration coefficient and since mesangial cell contraction is thought to be responsible for the reduction in the ultrafiltration coefficient, we examined the effect of histamine on the contractile property of mesangial cells. Histamine (5 X 10(-6)-10(-4) M) contracted mesangial cells, and the H1 antagonist diphenhydramine (10(-4) M) but not the H2 antagonist cimetidine (10(-4) M) prevented histamine (10(-4) M) induced contraction. In addition, the H1 agonist 2-pyridylethylamine, but not the H2 agonist dimaprit, contracted mesangial cells. Histamine and its specific agonists and antagonists induced contraction of isolated glomeruli as assessed by glomerular planar surface area in a manner parallel to their effect on mesangial cells. Cinnarizine (10(-5) M), a Ca++ channel blocker, or Ca++, Mg++-free medium prevented histamine (10(-4) M) induced mesangial cell and glomerular contraction. Thus, histamine enhances cAMP accumulation specifically in mesangial cells via an H2 receptor. In contrast, histamine contracts mesangial cells and glomeruli via an H1 receptor, an effect that is dependent on extracellular Ca++ entry. These findings show that histamine potentially influences intraglomerular hemodynamics via effects on mesangial cell contraction. Moreover, our findings considered with the in vivo observation that histamine reduces kf via and H1 receptor provide further support of the hypothesis that mesangial cell contraction regulates the glomerular capillary surface area available for filtration. Our studies also show that this contractile effect of histamine is dependent on extracellular calcium. The presence of a cAMP system sensitive to histamine may have major implications in the pathogenesis of inflammatory glomerulopathies. Mesangial cells possess characteristics similar to circulating and tissue immune effector cells, including lysosomal enzyme release, oxygen radical production, and release of a number of immunomodulatory factors. Histamine and cAMP have been shown to modulate such characteristics of inflammatory cells. It is therefore conceivable that histamine, via its interaction with H2 receptors and subsequent generation cAMP, may have profound effects on such properties of mesangial cells, suggesting that this autacoid may modulate not only glomerular hemodynamics but also immune, inflammatory responses within the glomerulus. SN - 0021-9738 UR - https://www.unboundmedicine.com/medline/citation/2582001/Histamine_modulates_contraction_and_cyclic_nucleotides_in_cultured_rat_mesangial_cells__Differential_effects_mediated_by_histamine_H1_and_H2_receptors_ DB - PRIME DP - Unbound Medicine ER -