Tags

Type your tag names separated by a space and hit enter

Effect of Irrigant Characteristics on Lesion Formation After Radiofrequency Energy Delivery Using Ablation Catheters with Actively Cooled Tips.
J Cardiovasc Electrophysiol. 2015 Jul; 26(7):792-8.JC

Abstract

BACKGROUND

The delivery of radiofrequency (RF) energy through irrigated ablation catheters may be affected by irrigant osmolarity and by catheter position. We sought to characterize lesion formation characteristics using different irrigants in both open and closed irrigated catheter.

METHODS

An ex vivo model consisting of viable bovine myocardium and a submersible load cell was assembled in a circulating saline bath at 37°C. An externally irrigated ablation catheter and a closed irrigated catheter were positioned with 10 g of force in both perpendicular and parallel positions. A series of ablation lesions using different irrigants were delivered using a constant rate of irrigation (30 cc/min) at 50 W. Potential clinical applicability was evaluated in vivo by targeting porcine epicardium with different irrigants during open irrigation ablation and assessing lesion sizes.

RESULTS

Ablation in the perpendicular position produced significantly larger lesions for all irrigants, compared to their respective parallel position ablation. For both open and closed irrigated ablation, half normal saline (HNS) ablation created larger lesions than normal saline (NS), and dextrose water (D5W) lesions were significantly larger than both HNS and NS lesions. Steam pops were mostly observed in the perpendicular position, and the rate of steam pops was statistically higher only for open irrigated D5W, but not for HNS, when compared to NS. Both open and closed irrigated ablation with D5W and HNS in the parallel position created larger lesions than parallel NS ablation without causing more steam pops. In an in vivo porcine model, open irrigated ablation with D5W created larger lesions compared to standard NS irrigation.

CONCLUSIONS

In ex vivo and in vivo models, decreased osmolarity and charge density increased RF energy delivery to tissue, resulting in larger lesions for both open and closed irrigated ablations. A perpendicular catheter position created larger lesions across all irrigants for both open and closed irrigation ablation. The incidence of steam pops was observed more frequently with high power open irrigated using D5W, especially if the catheter was in a perpendicular position. Further research is required to evaluate any clinical role for using different irrigants with an externally irrigated catheter.

Authors+Show Affiliations

University of Colorado, Section of Cardiac Electrophysiology, Division of Cardiology, Aurora, Colorado, USA.University of Colorado, Section of Cardiac Electrophysiology, Division of Cardiology, Aurora, Colorado, USA.University of Colorado, Section of Cardiac Electrophysiology, Division of Cardiology, Aurora, Colorado, USA.University of Colorado, Section of Cardiac Electrophysiology, Division of Cardiology, Aurora, Colorado, USA.University of Chicago, Division of Cardiology, Chicago, Illinois, USA.University of Colorado, Section of Cardiac Electrophysiology, Division of Cardiology, Aurora, Colorado, USA.

Pub Type(s)

Comparative Study
Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

25864402

Citation

Nguyen, Duy T., et al. "Effect of Irrigant Characteristics On Lesion Formation After Radiofrequency Energy Delivery Using Ablation Catheters With Actively Cooled Tips." Journal of Cardiovascular Electrophysiology, vol. 26, no. 7, 2015, pp. 792-8.
Nguyen DT, Olson M, Zheng L, et al. Effect of Irrigant Characteristics on Lesion Formation After Radiofrequency Energy Delivery Using Ablation Catheters with Actively Cooled Tips. J Cardiovasc Electrophysiol. 2015;26(7):792-8.
Nguyen, D. T., Olson, M., Zheng, L., Barham, W., Moss, J. D., & Sauer, W. H. (2015). Effect of Irrigant Characteristics on Lesion Formation After Radiofrequency Energy Delivery Using Ablation Catheters with Actively Cooled Tips. Journal of Cardiovascular Electrophysiology, 26(7), 792-8. https://doi.org/10.1111/jce.12682
Nguyen DT, et al. Effect of Irrigant Characteristics On Lesion Formation After Radiofrequency Energy Delivery Using Ablation Catheters With Actively Cooled Tips. J Cardiovasc Electrophysiol. 2015;26(7):792-8. PubMed PMID: 25864402.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Effect of Irrigant Characteristics on Lesion Formation After Radiofrequency Energy Delivery Using Ablation Catheters with Actively Cooled Tips. AU - Nguyen,Duy T, AU - Olson,Matthew, AU - Zheng,Lijun, AU - Barham,Waseem, AU - Moss,Joshua D, AU - Sauer,William H, PY - 2015/02/12/received PY - 2015/03/22/revised PY - 2015/03/31/accepted PY - 2015/4/14/entrez PY - 2015/4/14/pubmed PY - 2016/4/14/medline KW - Smart Touch catheter KW - catheter ablation KW - contact force KW - experimental study KW - irrigated catheter tip KW - ventricular tachycardia SP - 792 EP - 8 JF - Journal of cardiovascular electrophysiology JO - J Cardiovasc Electrophysiol VL - 26 IS - 7 N2 - BACKGROUND: The delivery of radiofrequency (RF) energy through irrigated ablation catheters may be affected by irrigant osmolarity and by catheter position. We sought to characterize lesion formation characteristics using different irrigants in both open and closed irrigated catheter. METHODS: An ex vivo model consisting of viable bovine myocardium and a submersible load cell was assembled in a circulating saline bath at 37°C. An externally irrigated ablation catheter and a closed irrigated catheter were positioned with 10 g of force in both perpendicular and parallel positions. A series of ablation lesions using different irrigants were delivered using a constant rate of irrigation (30 cc/min) at 50 W. Potential clinical applicability was evaluated in vivo by targeting porcine epicardium with different irrigants during open irrigation ablation and assessing lesion sizes. RESULTS: Ablation in the perpendicular position produced significantly larger lesions for all irrigants, compared to their respective parallel position ablation. For both open and closed irrigated ablation, half normal saline (HNS) ablation created larger lesions than normal saline (NS), and dextrose water (D5W) lesions were significantly larger than both HNS and NS lesions. Steam pops were mostly observed in the perpendicular position, and the rate of steam pops was statistically higher only for open irrigated D5W, but not for HNS, when compared to NS. Both open and closed irrigated ablation with D5W and HNS in the parallel position created larger lesions than parallel NS ablation without causing more steam pops. In an in vivo porcine model, open irrigated ablation with D5W created larger lesions compared to standard NS irrigation. CONCLUSIONS: In ex vivo and in vivo models, decreased osmolarity and charge density increased RF energy delivery to tissue, resulting in larger lesions for both open and closed irrigated ablations. A perpendicular catheter position created larger lesions across all irrigants for both open and closed irrigation ablation. The incidence of steam pops was observed more frequently with high power open irrigated using D5W, especially if the catheter was in a perpendicular position. Further research is required to evaluate any clinical role for using different irrigants with an externally irrigated catheter. SN - 1540-8167 UR - https://www.unboundmedicine.com/medline/citation/25864402/Effect_of_Irrigant_Characteristics_on_Lesion_Formation_After_Radiofrequency_Energy_Delivery_Using_Ablation_Catheters_with_Actively_Cooled_Tips_ DB - PRIME DP - Unbound Medicine ER -