Tags

Type your tag names separated by a space and hit enter

Full Fatty Acid Amide Hydrolase Inhibition Combined with Partial Monoacylglycerol Lipase Inhibition: Augmented and Sustained Antinociceptive Effects with Reduced Cannabimimetic Side Effects in Mice.
J Pharmacol Exp Ther. 2015 Aug; 354(2):111-20.JP

Abstract

Inhibition of fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MAGL), the primary hydrolytic enzymes for the respective endocannabinoids N-arachidonoylethanolamine (AEA) and 2-arachidonylglycerol (2-AG), produces antinociception but with minimal cannabimimetic side effects. Although selective inhibitors of either enzyme often show partial efficacy in various nociceptive models, their combined blockade elicits augmented antinociceptive effects, but side effects emerge. Moreover, complete and prolonged MAGL blockade leads to cannabinoid receptor type 1 (CB1) receptor functional tolerance, which represents another challenge in this potential therapeutic strategy. Therefore, the present study tested whether full FAAH inhibition combined with partial MAGL inhibition would produce sustained antinociceptive effects with minimal cannabimimetic side effects. Accordingly, we tested a high dose of the FAAH inhibitor PF-3845 (N-​3-​pyridinyl-​4-​[[3-​[[5-​(trifluoromethyl)-​2-​pyridinyl]oxy]phenyl]methyl]-​1-​piperidinecarboxamide; 10 mg/kg) given in combination with a low dose of the MAGL inhibitor JZL184 [4-nitrophenyl 4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate] (4 mg/kg) in mouse models of inflammatory and neuropathic pain. This combination of inhibitors elicited profound increases in brain AEA levels (>10-fold) but only 2- to 3-fold increases in brain 2-AG levels. This combination produced significantly greater antinociceptive effects than single enzyme inhibition and did not elicit common cannabimimetic effects (e.g., catalepsy, hypomotility, hypothermia, and substitution for Δ(9)-tetrahydrocannabinol in the drug-discrimination assay), although these side effects emerged with high-dose JZL184 (i.e., 100 mg/kg). Finally, repeated administration of this combination did not lead to tolerance to its antiallodynic actions in the carrageenan assay or CB1 receptor functional tolerance. Thus, full FAAH inhibition combined with partial MAGL inhibition reduces neuropathic and inflammatory pain states with minimal cannabimimetic effects.

Authors+Show Affiliations

Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (S.G., T.W.G., C.R.M., L.E.W., R.A.A., D.E.S., L.J.S.-S., A.H.L.); Department of Psychology, West Virginia University, Morgantown, West Virginia (S.G.K.); Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin (Q.L.); Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas (L.H., L.R.M.); and The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (B.F.C.).Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (S.G., T.W.G., C.R.M., L.E.W., R.A.A., D.E.S., L.J.S.-S., A.H.L.); Department of Psychology, West Virginia University, Morgantown, West Virginia (S.G.K.); Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin (Q.L.); Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas (L.H., L.R.M.); and The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (B.F.C.).Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (S.G., T.W.G., C.R.M., L.E.W., R.A.A., D.E.S., L.J.S.-S., A.H.L.); Department of Psychology, West Virginia University, Morgantown, West Virginia (S.G.K.); Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin (Q.L.); Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas (L.H., L.R.M.); and The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (B.F.C.).Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (S.G., T.W.G., C.R.M., L.E.W., R.A.A., D.E.S., L.J.S.-S., A.H.L.); Department of Psychology, West Virginia University, Morgantown, West Virginia (S.G.K.); Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin (Q.L.); Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas (L.H., L.R.M.); and The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (B.F.C.).Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (S.G., T.W.G., C.R.M., L.E.W., R.A.A., D.E.S., L.J.S.-S., A.H.L.); Department of Psychology, West Virginia University, Morgantown, West Virginia (S.G.K.); Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin (Q.L.); Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas (L.H., L.R.M.); and The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (B.F.C.).Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (S.G., T.W.G., C.R.M., L.E.W., R.A.A., D.E.S., L.J.S.-S., A.H.L.); Department of Psychology, West Virginia University, Morgantown, West Virginia (S.G.K.); Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin (Q.L.); Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas (L.H., L.R.M.); and The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (B.F.C.).Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (S.G., T.W.G., C.R.M., L.E.W., R.A.A., D.E.S., L.J.S.-S., A.H.L.); Department of Psychology, West Virginia University, Morgantown, West Virginia (S.G.K.); Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin (Q.L.); Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas (L.H., L.R.M.); and The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (B.F.C.).Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (S.G., T.W.G., C.R.M., L.E.W., R.A.A., D.E.S., L.J.S.-S., A.H.L.); Department of Psychology, West Virginia University, Morgantown, West Virginia (S.G.K.); Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin (Q.L.); Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas (L.H., L.R.M.); and The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (B.F.C.).Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (S.G., T.W.G., C.R.M., L.E.W., R.A.A., D.E.S., L.J.S.-S., A.H.L.); Department of Psychology, West Virginia University, Morgantown, West Virginia (S.G.K.); Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin (Q.L.); Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas (L.H., L.R.M.); and The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (B.F.C.).Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (S.G., T.W.G., C.R.M., L.E.W., R.A.A., D.E.S., L.J.S.-S., A.H.L.); Department of Psychology, West Virginia University, Morgantown, West Virginia (S.G.K.); Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin (Q.L.); Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas (L.H., L.R.M.); and The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (B.F.C.).Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (S.G., T.W.G., C.R.M., L.E.W., R.A.A., D.E.S., L.J.S.-S., A.H.L.); Department of Psychology, West Virginia University, Morgantown, West Virginia (S.G.K.); Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin (Q.L.); Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas (L.H., L.R.M.); and The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (B.F.C.).Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (S.G., T.W.G., C.R.M., L.E.W., R.A.A., D.E.S., L.J.S.-S., A.H.L.); Department of Psychology, West Virginia University, Morgantown, West Virginia (S.G.K.); Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin (Q.L.); Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas (L.H., L.R.M.); and The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (B.F.C.).Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (S.G., T.W.G., C.R.M., L.E.W., R.A.A., D.E.S., L.J.S.-S., A.H.L.); Department of Psychology, West Virginia University, Morgantown, West Virginia (S.G.K.); Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin (Q.L.); Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas (L.H., L.R.M.); and The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (B.F.C.) alichtma@vcu.edu.

Pub Type(s)

Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

25998048

Citation

Ghosh, Sudeshna, et al. "Full Fatty Acid Amide Hydrolase Inhibition Combined With Partial Monoacylglycerol Lipase Inhibition: Augmented and Sustained Antinociceptive Effects With Reduced Cannabimimetic Side Effects in Mice." The Journal of Pharmacology and Experimental Therapeutics, vol. 354, no. 2, 2015, pp. 111-20.
Ghosh S, Kinsey SG, Liu QS, et al. Full Fatty Acid Amide Hydrolase Inhibition Combined with Partial Monoacylglycerol Lipase Inhibition: Augmented and Sustained Antinociceptive Effects with Reduced Cannabimimetic Side Effects in Mice. J Pharmacol Exp Ther. 2015;354(2):111-20.
Ghosh, S., Kinsey, S. G., Liu, Q. S., Hruba, L., McMahon, L. R., Grim, T. W., Merritt, C. R., Wise, L. E., Abdullah, R. A., Selley, D. E., Sim-Selley, L. J., Cravatt, B. F., & Lichtman, A. H. (2015). Full Fatty Acid Amide Hydrolase Inhibition Combined with Partial Monoacylglycerol Lipase Inhibition: Augmented and Sustained Antinociceptive Effects with Reduced Cannabimimetic Side Effects in Mice. The Journal of Pharmacology and Experimental Therapeutics, 354(2), 111-20. https://doi.org/10.1124/jpet.115.222851
Ghosh S, et al. Full Fatty Acid Amide Hydrolase Inhibition Combined With Partial Monoacylglycerol Lipase Inhibition: Augmented and Sustained Antinociceptive Effects With Reduced Cannabimimetic Side Effects in Mice. J Pharmacol Exp Ther. 2015;354(2):111-20. PubMed PMID: 25998048.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Full Fatty Acid Amide Hydrolase Inhibition Combined with Partial Monoacylglycerol Lipase Inhibition: Augmented and Sustained Antinociceptive Effects with Reduced Cannabimimetic Side Effects in Mice. AU - Ghosh,Sudeshna, AU - Kinsey,Steven G, AU - Liu,Qing-Song, AU - Hruba,Lenka, AU - McMahon,Lance R, AU - Grim,Travis W, AU - Merritt,Christina R, AU - Wise,Laura E, AU - Abdullah,Rehab A, AU - Selley,Dana E, AU - Sim-Selley,Laura J, AU - Cravatt,Benjamin F, AU - Lichtman,Aron H, Y1 - 2015/05/21/ PY - 2015/01/11/received PY - 2015/04/27/accepted PY - 2015/5/23/entrez PY - 2015/5/23/pubmed PY - 2015/9/16/medline SP - 111 EP - 20 JF - The Journal of pharmacology and experimental therapeutics JO - J Pharmacol Exp Ther VL - 354 IS - 2 N2 - Inhibition of fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MAGL), the primary hydrolytic enzymes for the respective endocannabinoids N-arachidonoylethanolamine (AEA) and 2-arachidonylglycerol (2-AG), produces antinociception but with minimal cannabimimetic side effects. Although selective inhibitors of either enzyme often show partial efficacy in various nociceptive models, their combined blockade elicits augmented antinociceptive effects, but side effects emerge. Moreover, complete and prolonged MAGL blockade leads to cannabinoid receptor type 1 (CB1) receptor functional tolerance, which represents another challenge in this potential therapeutic strategy. Therefore, the present study tested whether full FAAH inhibition combined with partial MAGL inhibition would produce sustained antinociceptive effects with minimal cannabimimetic side effects. Accordingly, we tested a high dose of the FAAH inhibitor PF-3845 (N-​3-​pyridinyl-​4-​[[3-​[[5-​(trifluoromethyl)-​2-​pyridinyl]oxy]phenyl]methyl]-​1-​piperidinecarboxamide; 10 mg/kg) given in combination with a low dose of the MAGL inhibitor JZL184 [4-nitrophenyl 4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate] (4 mg/kg) in mouse models of inflammatory and neuropathic pain. This combination of inhibitors elicited profound increases in brain AEA levels (>10-fold) but only 2- to 3-fold increases in brain 2-AG levels. This combination produced significantly greater antinociceptive effects than single enzyme inhibition and did not elicit common cannabimimetic effects (e.g., catalepsy, hypomotility, hypothermia, and substitution for Δ(9)-tetrahydrocannabinol in the drug-discrimination assay), although these side effects emerged with high-dose JZL184 (i.e., 100 mg/kg). Finally, repeated administration of this combination did not lead to tolerance to its antiallodynic actions in the carrageenan assay or CB1 receptor functional tolerance. Thus, full FAAH inhibition combined with partial MAGL inhibition reduces neuropathic and inflammatory pain states with minimal cannabimimetic effects. SN - 1521-0103 UR - https://www.unboundmedicine.com/medline/citation/25998048/Full_Fatty_Acid_Amide_Hydrolase_Inhibition_Combined_with_Partial_Monoacylglycerol_Lipase_Inhibition:_Augmented_and_Sustained_Antinociceptive_Effects_with_Reduced_Cannabimimetic_Side_Effects_in_Mice_ L2 - https://jpet.aspetjournals.org/cgi/pmidlookup?view=long&pmid=25998048 DB - PRIME DP - Unbound Medicine ER -