Tags

Type your tag names separated by a space and hit enter

The variable chemotherapeutic response of Malabaricone-A in leukemic and solid tumor cell lines depends on the degree of redox imbalance.
Phytomedicine 2015; 22(7-8):713-23P

Abstract

PURPOSE

The 'two-faced' character of reactive oxygen species (ROS) plays an important role in cancer biology by acting as secondary messengers in intracellular signaling cascades, enhancing cell proliferation and survival, thereby sustaining the oncogenic phenotype. Conversely, enhanced generation of ROS can trigger an oxidative assault leading to a redox imbalance translating into an apoptotic cell death. Intrinsically, cancer cells have higher basal levels of ROS which if supplemented by additional oxidative insult by pro-oxidants can be cytotoxic, an example being Malabaricone-A (MAL-A). MAL-A is a plant derived diarylnonanoid, purified from fruit rind of the plant Myristica malabarica whose anti-cancer activity has been demonstrated in leukemic cell lines, the modality of cell death being apoptosis. This study aimed to compare the degree of effectiveness of MAL-A in leukemic vs. solid tumor cell lines.

METHODS

The cytotoxicity of MAL-A was evaluated by the MTS-PMS cell viability assay in leukemic cell lines (MOLT3, K562 and HL-60) and compared with solid tumor cell lines (MCF7, A549 and HepG2); further studies then proceeded with MOLT3 vs. MCF7 and A549. The contribution of redox imbalance in MAL-A induced cytotoxicity was confirmed by pre-incubating cells with an antioxidant, N-acetyl-L-cysteine (NAC) or a thiol depletor, buthionine sulfoximine (BSO). MAL-A induced redox imbalance was quantitated by flow cytometry, by measuring the generation of ROS and levels of non protein thiols using dichlorofluorescein diacetate (CM-H2DCFDA) and 5-chloromethylfluorescein diacetate (CMFDA) respectively. The activities of glutathione peroxidase (GPx), superoxide dismutase, catalase (CAT), NAD(P)H dehydrogenase (quinone 1) NQO1 and glutathione-S-transferase GST were measured spectrophotometrically. The mitochondrial involvement of MAL-A induced cell death was measured by evaluation of cardiolipin peroxidation using 10-N-nonyl acridine orange (NAO), transition pore activity with calcein-AM, while the mitochondrial transmembrane electrochemical gradient (∆ψ(m)) was measured by JC-1, fluorescence being acquired in a flow cytometer. The apoptotic mode of cell death was evaluated by double staining with annexin V-FITC and propidium iodide (PI), cell cycle analysis by flow cytometry and caspase-3 activity spectrophotometrically. The expression of Nrf2 and HO-1 was examined by western blotting.

RESULTS

MAL-A demonstrated a higher degree of cytotoxicity in three leukemic cell lines whose IC50 ranged from 12.70 ± 0.10 to 18.10 ± 0.95 µg/ml, whereas in three solid tumor cell lines, the IC50 ranged from 28.10 ± 0.58 to 55.26 ± 5.90 µg/ml. This higher degree of cytotoxicity in MOLT3, a leukemic cell line was due to a higher induction of redox imbalance, evident by both an increased generation of ROS and concomitant depletion of thiols. This was confirmed by pre-incubation with NAC and BSO, wherein NAC decreased MAL-A induced cytotoxicity by 2.04 fold while BSO enhanced MAL-A cytotoxicity and decreased the IC50 by 5.60 fold. However, in solid tumor cell lines (MCF7 and A549), NAC minimally decreased MAL-A induced cytotoxicity, and BSO increased the IC50 by 1.96 and 2.39 fold respectively. Furthermore, the generation of ROS by MAL-A increased maximally in MOLT3 as the fluorescence increased from 44.28 ± 7.85 to 273.99 ± 32.78, and to a lesser degree in solid tumor cell lines, MCF7 (44.28 ± 14.89 to 207.97 ± 70.64) and A549 (37.87 ± 3.24 to 147.12 ± 38.53). In all three cell lines there was a concomitant depletion of thiols as in MOLT3, the GMFC decreased from 340.65 ± 60.39 to 62.67 ± 11.32, in MCF7 (277.82 ± 50.32 to 100.39 ± 31.93) and in A549 (274.05 ± 59.13 to 83.15 ± 21.43). In MOLT3 as compared to MCF7 and A549, decrease in the activities of GPx, CAT, NQO1 and GST was substantially greater. In all cell lines, the MAL-A induced redox imbalance translated into triggering of initial mitochondrial apoptotic events. Here again, MAL-A induced a higher degree of cardiolipin peroxidation in MOLT3 (67.01%) than MCF7 and A549 (29.15% and 44.30%), as also down regulated the mitochondrial transition pore activity from baseline to a higher extent, GMFC being 48.05 ± 2.37 to 10.70 ± 3.97 (MOLT3), 43.55 ± 3.36 to 15.36 ± 0.60 (MCF7) and 39.58 ± 0.4 to 12.65 ± 1.56 (A549). Perturbation of mitochondrial membrane potential evident by a decrease in the ratio of red/green (J-aggregates/monomers) was 134 fold (14.73/0.11) in MOLT3, 45 fold in MCF7 (20.72/0.46) and 34 fold in A549 (22.01/0.64). The extent of apoptosis using a similar concentration of MAL-A was maximal in MOLT3, wherein a 105 fold increase in annexin V binding was evident (0.83 ± 0.51 to 87.08 ± 9.85%) whereas it increased by 43.11 fold in MCF7 (0.69 ± 0.30 to 29.75 ± 11.79%) and 47.52 fold in A549 (0.61 ± 0.31 to 28.99 ± 17.21%). MAL-A induced apoptosis was also associated with a higher degree of caspase-3 activity in MOLT3 vs. MCF7 or A549 which translated into halting of cell cycle progression, evident by an increment in the sub-G0/G1 population [19.26 fold in MOLT3 (0.95 ± 0.45 vs. 18.30 ± 1.90%), 11.01 fold in MCF7 (0.97 ± 0.37 vs. 10.68 ± 0.69%) and 8.58 fold in A549 (1.06 ± 0.45 vs. 9.10 ± 1.05%)]. MAL-A effectively inhibited Nrf2 and HO-1, more prominently in MOLT3. Furthermore, the decreased expression of Nrf2 in MOLT3 correlated with the decreased activities of NQO1 and GST, suggesting that targeting of the Nrf2 anti-oxidant pathway could be considered.

CONCLUSION

Taken together, MAL-A a pro-oxidant compound is likely to be more effective in leukemias, meriting further pharmacological consideration.

Authors+Show Affiliations

Department of Pharmacology, Institute of Post Graduate Medical Education and Research, 244B, Acharya JC Bose Road, Kolkata 700 020, India.Department of Pharmacology, Institute of Post Graduate Medical Education and Research, 244B, Acharya JC Bose Road, Kolkata 700 020, India.Department of Pharmacology, Institute of Post Graduate Medical Education and Research, 244B, Acharya JC Bose Road, Kolkata 700 020, India.Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India.Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India.Department of Pharmacology, Institute of Post Graduate Medical Education and Research, 244B, Acharya JC Bose Road, Kolkata 700 020, India . Electronic address: ilatim@vsnl.net.

Pub Type(s)

Comparative Study
Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

26141757

Citation

Manna, Alak, et al. "The Variable Chemotherapeutic Response of Malabaricone-A in Leukemic and Solid Tumor Cell Lines Depends On the Degree of Redox Imbalance." Phytomedicine : International Journal of Phytotherapy and Phytopharmacology, vol. 22, no. 7-8, 2015, pp. 713-23.
Manna A, De Sarkar S, De S, et al. The variable chemotherapeutic response of Malabaricone-A in leukemic and solid tumor cell lines depends on the degree of redox imbalance. Phytomedicine. 2015;22(7-8):713-23.
Manna, A., De Sarkar, S., De, S., Bauri, A. K., Chattopadhyay, S., & Chatterjee, M. (2015). The variable chemotherapeutic response of Malabaricone-A in leukemic and solid tumor cell lines depends on the degree of redox imbalance. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology, 22(7-8), pp. 713-23. doi:10.1016/j.phymed.2015.05.007.
Manna A, et al. The Variable Chemotherapeutic Response of Malabaricone-A in Leukemic and Solid Tumor Cell Lines Depends On the Degree of Redox Imbalance. Phytomedicine. 2015 Jul 15;22(7-8):713-23. PubMed PMID: 26141757.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - The variable chemotherapeutic response of Malabaricone-A in leukemic and solid tumor cell lines depends on the degree of redox imbalance. AU - Manna,Alak, AU - De Sarkar,Sritama, AU - De,Soumita, AU - Bauri,Ajay K, AU - Chattopadhyay,Subrata, AU - Chatterjee,Mitali, Y1 - 2015/05/29/ PY - 2014/09/29/received PY - 2015/05/12/revised PY - 2015/05/20/accepted PY - 2015/7/5/entrez PY - 2015/7/5/pubmed PY - 2015/9/30/medline KW - Apoptosis KW - Malabaricone-A KW - Oxidative stress KW - Pro-oxidant KW - Reactive oxygen species KW - Redox imbalance SP - 713 EP - 23 JF - Phytomedicine : international journal of phytotherapy and phytopharmacology JO - Phytomedicine VL - 22 IS - 7-8 N2 - PURPOSE: The 'two-faced' character of reactive oxygen species (ROS) plays an important role in cancer biology by acting as secondary messengers in intracellular signaling cascades, enhancing cell proliferation and survival, thereby sustaining the oncogenic phenotype. Conversely, enhanced generation of ROS can trigger an oxidative assault leading to a redox imbalance translating into an apoptotic cell death. Intrinsically, cancer cells have higher basal levels of ROS which if supplemented by additional oxidative insult by pro-oxidants can be cytotoxic, an example being Malabaricone-A (MAL-A). MAL-A is a plant derived diarylnonanoid, purified from fruit rind of the plant Myristica malabarica whose anti-cancer activity has been demonstrated in leukemic cell lines, the modality of cell death being apoptosis. This study aimed to compare the degree of effectiveness of MAL-A in leukemic vs. solid tumor cell lines. METHODS: The cytotoxicity of MAL-A was evaluated by the MTS-PMS cell viability assay in leukemic cell lines (MOLT3, K562 and HL-60) and compared with solid tumor cell lines (MCF7, A549 and HepG2); further studies then proceeded with MOLT3 vs. MCF7 and A549. The contribution of redox imbalance in MAL-A induced cytotoxicity was confirmed by pre-incubating cells with an antioxidant, N-acetyl-L-cysteine (NAC) or a thiol depletor, buthionine sulfoximine (BSO). MAL-A induced redox imbalance was quantitated by flow cytometry, by measuring the generation of ROS and levels of non protein thiols using dichlorofluorescein diacetate (CM-H2DCFDA) and 5-chloromethylfluorescein diacetate (CMFDA) respectively. The activities of glutathione peroxidase (GPx), superoxide dismutase, catalase (CAT), NAD(P)H dehydrogenase (quinone 1) NQO1 and glutathione-S-transferase GST were measured spectrophotometrically. The mitochondrial involvement of MAL-A induced cell death was measured by evaluation of cardiolipin peroxidation using 10-N-nonyl acridine orange (NAO), transition pore activity with calcein-AM, while the mitochondrial transmembrane electrochemical gradient (∆ψ(m)) was measured by JC-1, fluorescence being acquired in a flow cytometer. The apoptotic mode of cell death was evaluated by double staining with annexin V-FITC and propidium iodide (PI), cell cycle analysis by flow cytometry and caspase-3 activity spectrophotometrically. The expression of Nrf2 and HO-1 was examined by western blotting. RESULTS: MAL-A demonstrated a higher degree of cytotoxicity in three leukemic cell lines whose IC50 ranged from 12.70 ± 0.10 to 18.10 ± 0.95 µg/ml, whereas in three solid tumor cell lines, the IC50 ranged from 28.10 ± 0.58 to 55.26 ± 5.90 µg/ml. This higher degree of cytotoxicity in MOLT3, a leukemic cell line was due to a higher induction of redox imbalance, evident by both an increased generation of ROS and concomitant depletion of thiols. This was confirmed by pre-incubation with NAC and BSO, wherein NAC decreased MAL-A induced cytotoxicity by 2.04 fold while BSO enhanced MAL-A cytotoxicity and decreased the IC50 by 5.60 fold. However, in solid tumor cell lines (MCF7 and A549), NAC minimally decreased MAL-A induced cytotoxicity, and BSO increased the IC50 by 1.96 and 2.39 fold respectively. Furthermore, the generation of ROS by MAL-A increased maximally in MOLT3 as the fluorescence increased from 44.28 ± 7.85 to 273.99 ± 32.78, and to a lesser degree in solid tumor cell lines, MCF7 (44.28 ± 14.89 to 207.97 ± 70.64) and A549 (37.87 ± 3.24 to 147.12 ± 38.53). In all three cell lines there was a concomitant depletion of thiols as in MOLT3, the GMFC decreased from 340.65 ± 60.39 to 62.67 ± 11.32, in MCF7 (277.82 ± 50.32 to 100.39 ± 31.93) and in A549 (274.05 ± 59.13 to 83.15 ± 21.43). In MOLT3 as compared to MCF7 and A549, decrease in the activities of GPx, CAT, NQO1 and GST was substantially greater. In all cell lines, the MAL-A induced redox imbalance translated into triggering of initial mitochondrial apoptotic events. Here again, MAL-A induced a higher degree of cardiolipin peroxidation in MOLT3 (67.01%) than MCF7 and A549 (29.15% and 44.30%), as also down regulated the mitochondrial transition pore activity from baseline to a higher extent, GMFC being 48.05 ± 2.37 to 10.70 ± 3.97 (MOLT3), 43.55 ± 3.36 to 15.36 ± 0.60 (MCF7) and 39.58 ± 0.4 to 12.65 ± 1.56 (A549). Perturbation of mitochondrial membrane potential evident by a decrease in the ratio of red/green (J-aggregates/monomers) was 134 fold (14.73/0.11) in MOLT3, 45 fold in MCF7 (20.72/0.46) and 34 fold in A549 (22.01/0.64). The extent of apoptosis using a similar concentration of MAL-A was maximal in MOLT3, wherein a 105 fold increase in annexin V binding was evident (0.83 ± 0.51 to 87.08 ± 9.85%) whereas it increased by 43.11 fold in MCF7 (0.69 ± 0.30 to 29.75 ± 11.79%) and 47.52 fold in A549 (0.61 ± 0.31 to 28.99 ± 17.21%). MAL-A induced apoptosis was also associated with a higher degree of caspase-3 activity in MOLT3 vs. MCF7 or A549 which translated into halting of cell cycle progression, evident by an increment in the sub-G0/G1 population [19.26 fold in MOLT3 (0.95 ± 0.45 vs. 18.30 ± 1.90%), 11.01 fold in MCF7 (0.97 ± 0.37 vs. 10.68 ± 0.69%) and 8.58 fold in A549 (1.06 ± 0.45 vs. 9.10 ± 1.05%)]. MAL-A effectively inhibited Nrf2 and HO-1, more prominently in MOLT3. Furthermore, the decreased expression of Nrf2 in MOLT3 correlated with the decreased activities of NQO1 and GST, suggesting that targeting of the Nrf2 anti-oxidant pathway could be considered. CONCLUSION: Taken together, MAL-A a pro-oxidant compound is likely to be more effective in leukemias, meriting further pharmacological consideration. SN - 1618-095X UR - https://www.unboundmedicine.com/medline/citation/26141757/The_variable_chemotherapeutic_response_of_Malabaricone_A_in_leukemic_and_solid_tumor_cell_lines_depends_on_the_degree_of_redox_imbalance_ L2 - https://linkinghub.elsevier.com/retrieve/pii/S0944-7113(15)00119-1 DB - PRIME DP - Unbound Medicine ER -