Tags

Type your tag names separated by a space and hit enter

Reversing of multidrug resistance breast cancer by co-delivery of P-gp siRNA and doxorubicin via folic acid-modified core-shell nanomicelles.
Colloids Surf B Biointerfaces. 2016 Feb 01; 138:60-9.CS

Abstract

Multidrug resistance (MDR) remains one of major limitation for the successful treatment of many cancers including breast cancer. Co-delivery of chemotherapeutic drugs and small interfering RNA (siRNA) has been developed because of its ability to generate synergistic anticancer effects via different mechanisms of action, to reverse MDR and increase the efficacy of chemotherapeutic drugs in cancer therapy. Herein, we employed a kind of efficient multifunctional tumor targeted nanomicelles (PECL3) for the co-delivery of hydrophobic anti-cancer drugs and siRNA. This kind of nanomicelles were constructed by folic acid (FA)-decorated PEG-b-(PCL-g-PEI)-b-PCL triblock copolymers, which were synthesized through "click chemistry" and "ring opening" polymerization. Driven by the "core-shell" structure and the electrostatic interaction, this triblock copolymer could efficiently encapsulate P-glycoprotein (P-gp) siRNA and doxorubicin (DOX). The obtained nanomicelles can prevent renal clearance, RNase degradation and aggregation in circulation. Compared to the non-specific delivery, these FA functionalized nanomicelles could efficiently deliver P-gp siRNA to reducing both P-gp expression levels and IC50 value of the DOX in DOX-resistant breast cancer cells (MCF-7/ADR). Additionally, in vivo results showed that DOX loaded PECL3 (D-PECL3) micelles could reduce toxicity of DOX on nontarget tissues and significantly inhibited MCF-7/ADR tumor growth through encapsulating DOX in the micelles and deliver them to target tumor region. Taken together, these results proof that PECL3 micelles could co-deliver siRNA and drug to inhibit MDR tumor growth. These results suggested that the co-delivery of DOX and siRNA in tumor-targeting nanomicelles could excite synergistic effect of gene therapy and chemotherapy, thus can efficiently reverse MDR cancer and kill the cancer cells.

Authors+Show Affiliations

Research Center of Clinical Oncology, Jiangsu Cancer Hospital, Nanjing 210009, PR China.State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, PR China.State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, PR China.School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, PR China.Research Center of Clinical Oncology, Jiangsu Cancer Hospital, Nanjing 210009, PR China.Department of General Surgery, Jiangsu Cancer Hospital, Nanjing 210009, PR China. Electronic address: tangjinhai2015@sina.com.

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

26655793

Citation

Wu, Yang, et al. "Reversing of Multidrug Resistance Breast Cancer By Co-delivery of P-gp siRNA and Doxorubicin Via Folic Acid-modified Core-shell Nanomicelles." Colloids and Surfaces. B, Biointerfaces, vol. 138, 2016, pp. 60-9.
Wu Y, Zhang Y, Zhang W, et al. Reversing of multidrug resistance breast cancer by co-delivery of P-gp siRNA and doxorubicin via folic acid-modified core-shell nanomicelles. Colloids Surf B Biointerfaces. 2016;138:60-9.
Wu, Y., Zhang, Y., Zhang, W., Sun, C., Wu, J., & Tang, J. (2016). Reversing of multidrug resistance breast cancer by co-delivery of P-gp siRNA and doxorubicin via folic acid-modified core-shell nanomicelles. Colloids and Surfaces. B, Biointerfaces, 138, 60-9. https://doi.org/10.1016/j.colsurfb.2015.11.041
Wu Y, et al. Reversing of Multidrug Resistance Breast Cancer By Co-delivery of P-gp siRNA and Doxorubicin Via Folic Acid-modified Core-shell Nanomicelles. Colloids Surf B Biointerfaces. 2016 Feb 1;138:60-9. PubMed PMID: 26655793.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Reversing of multidrug resistance breast cancer by co-delivery of P-gp siRNA and doxorubicin via folic acid-modified core-shell nanomicelles. AU - Wu,Yang, AU - Zhang,Yu, AU - Zhang,Wei, AU - Sun,Chunlong, AU - Wu,Jianzhong, AU - Tang,Jinhai, Y1 - 2015/11/25/ PY - 2015/05/05/received PY - 2015/11/20/revised PY - 2015/11/22/accepted PY - 2015/12/15/entrez PY - 2015/12/15/pubmed PY - 2016/10/1/medline KW - Co-delivery KW - Doxorubicin KW - P-glycoprotein siRNA KW - Synergistic action KW - Tumor target SP - 60 EP - 9 JF - Colloids and surfaces. B, Biointerfaces JO - Colloids Surf B Biointerfaces VL - 138 N2 - Multidrug resistance (MDR) remains one of major limitation for the successful treatment of many cancers including breast cancer. Co-delivery of chemotherapeutic drugs and small interfering RNA (siRNA) has been developed because of its ability to generate synergistic anticancer effects via different mechanisms of action, to reverse MDR and increase the efficacy of chemotherapeutic drugs in cancer therapy. Herein, we employed a kind of efficient multifunctional tumor targeted nanomicelles (PECL3) for the co-delivery of hydrophobic anti-cancer drugs and siRNA. This kind of nanomicelles were constructed by folic acid (FA)-decorated PEG-b-(PCL-g-PEI)-b-PCL triblock copolymers, which were synthesized through "click chemistry" and "ring opening" polymerization. Driven by the "core-shell" structure and the electrostatic interaction, this triblock copolymer could efficiently encapsulate P-glycoprotein (P-gp) siRNA and doxorubicin (DOX). The obtained nanomicelles can prevent renal clearance, RNase degradation and aggregation in circulation. Compared to the non-specific delivery, these FA functionalized nanomicelles could efficiently deliver P-gp siRNA to reducing both P-gp expression levels and IC50 value of the DOX in DOX-resistant breast cancer cells (MCF-7/ADR). Additionally, in vivo results showed that DOX loaded PECL3 (D-PECL3) micelles could reduce toxicity of DOX on nontarget tissues and significantly inhibited MCF-7/ADR tumor growth through encapsulating DOX in the micelles and deliver them to target tumor region. Taken together, these results proof that PECL3 micelles could co-deliver siRNA and drug to inhibit MDR tumor growth. These results suggested that the co-delivery of DOX and siRNA in tumor-targeting nanomicelles could excite synergistic effect of gene therapy and chemotherapy, thus can efficiently reverse MDR cancer and kill the cancer cells. SN - 1873-4367 UR - https://www.unboundmedicine.com/medline/citation/26655793/Reversing_of_multidrug_resistance_breast_cancer_by_co_delivery_of_P_gp_siRNA_and_doxorubicin_via_folic_acid_modified_core_shell_nanomicelles_ L2 - https://linkinghub.elsevier.com/retrieve/pii/S0927-7765(15)30324-6 DB - PRIME DP - Unbound Medicine ER -