Tags

Type your tag names separated by a space and hit enter

Deficiency of dietary niacin impaired intestinal mucosal immune function via regulating intestinal NF-κB, Nrf2 and MLCK signaling pathways in young grass carp (Ctenopharyngodon idella).
Fish Shellfish Immunol. 2016 Feb; 49:177-93.FS

Abstract

This study investigated the effects of dietary niacin on intestinal mucosal immune and physical barrier, and relative mRNA levels of signaling molecules in the intestine of young grass carp (Ctenopharyngodon idella). A total of 540 young grass carp (255.63 ± 0.41 g) were fed six diets containing graded levels of niacin (3.95, 14.92, 24.98, 35.03, 44.97 and 55.01 mg/kg diet) for 8 weeks. Results observed that niacin deficiency decreased lysozyme (LA) and acid phosphatase (ACP) activities, and complement 3 (C3) content in the intestine (P < 0.05), down-regulated mRNA levels of liver expressed antimicrobial peptide 2 (LEAP-2), hepcidin, interleukin 10, transforming growth factor β1 and inhibitor of κBα (IκBα) (P < 0.05), up-regulated tumor necrosis factor α, interleukin 1β, interferon γ2, interleukin 8, nuclear factor kappa B P65 (NF-κB P65), IκB kinase α (IKKα), IκB kinase β (IKKβ) and IκB kinase γ (IKKγ) in all intestinal segments of young grass carp (P < 0.05). In addition, niacin deficiency increased reactive oxygen species (ROS), malondialdehyde (MDA) and protein carbonyl (PC) contents, decreased glutathione content, and copper/zinc superoxide dismutase (CuZnSOD), manganese superoxide dismutase (MnSOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferases (GST) and glutathione reductase (GR) activities in the intestine of young grass carp (P < 0.05). Additionally, niacin deficiency decreased mRNA levels of CuZnSOD, MnSOD, GPx, CAT, GST, GR, Claudin b, Claudin 3, Claudin c, Occludin, ZO-1, Claudin 15 and NF-E2-related factor 2 (Nrf2) (P < 0.05), and increased Claudin 12, Kelch-like ECH-associating protein 1a (Keap1a), myosin light-chain kinase (MLCK) and p38 mitogen-activated protein kinase (p38 MAPK) mRNA expression levels in the intestine of young grass carp (P < 0.05), while the mRNA level of Kelch-like ECH-associating protein 1b (Keap1b) did not change (P > 0.05). In conclusion, niacin deficiency decreased intestinal mucosal immune and intestinal physical function, as well as regulated mRNA levels of NF-κB P65, IκBα, IKKα, IKKβ, IKKγ, Nrf2, Keap1a, p38 MAPK and MLCK in the intestine of young grass carp. Based on the broken-line model analysis of intestinal lysozyme activity, the requirement of niacin for young grass carp (255.63 ± 0.41 g) were estimated to be 39.80 mg/kg diet.

Authors+Show Affiliations

Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, Sichuan, China.Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, Sichuan, China.Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, Sichuan, China.Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, Sichuan, China.Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. Electronic address: xqzhouqq@tom.com.

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

26693667

Citation

Feng, Lin, et al. "Deficiency of Dietary Niacin Impaired Intestinal Mucosal Immune Function Via Regulating Intestinal NF-κB, Nrf2 and MLCK Signaling Pathways in Young Grass Carp (Ctenopharyngodon Idella)." Fish & Shellfish Immunology, vol. 49, 2016, pp. 177-93.
Feng L, Li SQ, Jiang WD, et al. Deficiency of dietary niacin impaired intestinal mucosal immune function via regulating intestinal NF-κB, Nrf2 and MLCK signaling pathways in young grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2016;49:177-93.
Feng, L., Li, S. Q., Jiang, W. D., Liu, Y., Jiang, J., Wu, P., Zhao, J., Kuang, S. Y., Tang, L., Tang, W. N., Zhang, Y. A., & Zhou, X. Q. (2016). Deficiency of dietary niacin impaired intestinal mucosal immune function via regulating intestinal NF-κB, Nrf2 and MLCK signaling pathways in young grass carp (Ctenopharyngodon idella). Fish & Shellfish Immunology, 49, 177-93. https://doi.org/10.1016/j.fsi.2015.12.015
Feng L, et al. Deficiency of Dietary Niacin Impaired Intestinal Mucosal Immune Function Via Regulating Intestinal NF-κB, Nrf2 and MLCK Signaling Pathways in Young Grass Carp (Ctenopharyngodon Idella). Fish Shellfish Immunol. 2016;49:177-93. PubMed PMID: 26693667.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Deficiency of dietary niacin impaired intestinal mucosal immune function via regulating intestinal NF-κB, Nrf2 and MLCK signaling pathways in young grass carp (Ctenopharyngodon idella). AU - Feng,Lin, AU - Li,Shun-Quan, AU - Jiang,Wei-Dan, AU - Liu,Yang, AU - Jiang,Jun, AU - Wu,Pei, AU - Zhao,Juan, AU - Kuang,Sheng-Yao, AU - Tang,Ling, AU - Tang,Wu-Neng, AU - Zhang,Yong-An, AU - Zhou,Xiao-Qiu, Y1 - 2015/12/13/ PY - 2015/08/31/received PY - 2015/12/10/revised PY - 2015/12/12/accepted PY - 2015/12/24/entrez PY - 2015/12/24/pubmed PY - 2016/11/3/medline KW - Antioxidant capability KW - Grass carp KW - Intestine KW - Mucosal immune KW - Niacin KW - Tight junction protein KW - mRNA level SP - 177 EP - 93 JF - Fish & shellfish immunology JO - Fish Shellfish Immunol VL - 49 N2 - This study investigated the effects of dietary niacin on intestinal mucosal immune and physical barrier, and relative mRNA levels of signaling molecules in the intestine of young grass carp (Ctenopharyngodon idella). A total of 540 young grass carp (255.63 ± 0.41 g) were fed six diets containing graded levels of niacin (3.95, 14.92, 24.98, 35.03, 44.97 and 55.01 mg/kg diet) for 8 weeks. Results observed that niacin deficiency decreased lysozyme (LA) and acid phosphatase (ACP) activities, and complement 3 (C3) content in the intestine (P < 0.05), down-regulated mRNA levels of liver expressed antimicrobial peptide 2 (LEAP-2), hepcidin, interleukin 10, transforming growth factor β1 and inhibitor of κBα (IκBα) (P < 0.05), up-regulated tumor necrosis factor α, interleukin 1β, interferon γ2, interleukin 8, nuclear factor kappa B P65 (NF-κB P65), IκB kinase α (IKKα), IκB kinase β (IKKβ) and IκB kinase γ (IKKγ) in all intestinal segments of young grass carp (P < 0.05). In addition, niacin deficiency increased reactive oxygen species (ROS), malondialdehyde (MDA) and protein carbonyl (PC) contents, decreased glutathione content, and copper/zinc superoxide dismutase (CuZnSOD), manganese superoxide dismutase (MnSOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferases (GST) and glutathione reductase (GR) activities in the intestine of young grass carp (P < 0.05). Additionally, niacin deficiency decreased mRNA levels of CuZnSOD, MnSOD, GPx, CAT, GST, GR, Claudin b, Claudin 3, Claudin c, Occludin, ZO-1, Claudin 15 and NF-E2-related factor 2 (Nrf2) (P < 0.05), and increased Claudin 12, Kelch-like ECH-associating protein 1a (Keap1a), myosin light-chain kinase (MLCK) and p38 mitogen-activated protein kinase (p38 MAPK) mRNA expression levels in the intestine of young grass carp (P < 0.05), while the mRNA level of Kelch-like ECH-associating protein 1b (Keap1b) did not change (P > 0.05). In conclusion, niacin deficiency decreased intestinal mucosal immune and intestinal physical function, as well as regulated mRNA levels of NF-κB P65, IκBα, IKKα, IKKβ, IKKγ, Nrf2, Keap1a, p38 MAPK and MLCK in the intestine of young grass carp. Based on the broken-line model analysis of intestinal lysozyme activity, the requirement of niacin for young grass carp (255.63 ± 0.41 g) were estimated to be 39.80 mg/kg diet. SN - 1095-9947 UR - https://www.unboundmedicine.com/medline/citation/26693667/Deficiency_of_dietary_niacin_impaired_intestinal_mucosal_immune_function_via_regulating_intestinal_NF_κB_Nrf2_and_MLCK_signaling_pathways_in_young_grass_carp__Ctenopharyngodon_idella__ L2 - https://linkinghub.elsevier.com/retrieve/pii/S1050-4648(15)30273-4 DB - PRIME DP - Unbound Medicine ER -