Chemo-, Diastereo-, and Enantioselective Iridium-Catalyzed Allylic Intramolecular Dearomatization Reaction of Naphthol Derivatives.Angew Chem Int Ed Engl. 2016 Mar 01; 55(10):3496-9.AC
An iridium-catalyzed intramolecular asymmetric allylic dearomatization reaction of naphthol derivatives is described. Challenges confronted in this reaction include chemoselectivity between carbon and oxygen atoms as nucleophilic centers, diastereoselectivity when contiguous chiral centers are generated, and enantioselective control for constructing an all-carbon quaternary stereocenter. In the presence of an iridium catalyst generated from [{Ir(dbcot)Cl}2] (dbcot=dibenzocyclooctatetraene) and a new THQphos (tetrahydroquinolinedinaphthophosphoramidite) ligand, various spironaphthalenones were obtained with up to greater than 95:5 C/O selectivity, greater than 95:5 d.r., and 99 % ee, thus providing a general method for the dearomatization of naphthols.