Tags

Type your tag names separated by a space and hit enter

Hierarchical TiO2/C nanocomposite monoliths with a robust scaffolding architecture, mesopore-macropore network and TiO2-C heterostructure for high-performance lithium ion batteries.
Nanoscale. 2016 Jun 07; 8(21):10928-37.N

Abstract

Engineering hierarchical structures of electrode materials is a powerful strategy for optimizing the electrochemical performance of an anode material for lithium-ion batteries (LIBs). Herein, we report the fabrication of hierarchical TiO2/C nanocomposite monoliths by mediated mineralization and carbonization using bacterial cellulose (BC) as a scaffolding template as well as a carbon source. TiO2/C has a robust scaffolding architecture, a mesopore-macropore network and TiO2-C heterostructure. TiO2/C-500, obtained by calcination at 500 °C in nitrogen, contains an anatase TiO2-C heterostructure with a specific surface area of 66.5 m(2) g(-1). When evaluated as an anode material at 0.5 C, TiO2/C-500 exhibits a high and reversible lithium storage capacity of 188 mA h g(-1), an excellent initial capacity of 283 mA h g(-1), a long cycle life with a 94% coulombic efficiency preserved after 200 cycles, and a very low charge transfer resistance. The superior electrochemical performance of TiO2/C-500 is attributed to the synergistic effect of high electrical conductivity, anatase TiO2-C heterostructure, mesopore-macropore network and robust scaffolding architecture. The current material strategy affords a general approach for the design of complex inorganic nanocomposites with structural stability, and tunable and interconnected hierarchical porosity that may lead to the next generation of electrochemical supercapacitors with high energy efficiency and superior power density.

Authors+Show Affiliations

State Key Lab of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China. yanxu@jlu.edu.cn.No affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article

Language

eng

PubMed ID

26864500

Citation

Huang, Hai-Bo, et al. "Hierarchical TiO2/C Nanocomposite Monoliths With a Robust Scaffolding Architecture, Mesopore-macropore Network and TiO2-C Heterostructure for High-performance Lithium Ion Batteries." Nanoscale, vol. 8, no. 21, 2016, pp. 10928-37.
Huang HB, Yang Y, Chen LH, et al. Hierarchical TiO2/C nanocomposite monoliths with a robust scaffolding architecture, mesopore-macropore network and TiO2-C heterostructure for high-performance lithium ion batteries. Nanoscale. 2016;8(21):10928-37.
Huang, H. B., Yang, Y., Chen, L. H., Wang, Y., Huang, S. Z., Tao, J. W., Ma, X. T., Hasan, T., Li, Y., Xu, Y., & Su, B. L. (2016). Hierarchical TiO2/C nanocomposite monoliths with a robust scaffolding architecture, mesopore-macropore network and TiO2-C heterostructure for high-performance lithium ion batteries. Nanoscale, 8(21), 10928-37. https://doi.org/10.1039/c5nr09149g
Huang HB, et al. Hierarchical TiO2/C Nanocomposite Monoliths With a Robust Scaffolding Architecture, Mesopore-macropore Network and TiO2-C Heterostructure for High-performance Lithium Ion Batteries. Nanoscale. 2016 Jun 7;8(21):10928-37. PubMed PMID: 26864500.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Hierarchical TiO2/C nanocomposite monoliths with a robust scaffolding architecture, mesopore-macropore network and TiO2-C heterostructure for high-performance lithium ion batteries. AU - Huang,Hai-Bo, AU - Yang,Yue, AU - Chen,Li-Hua, AU - Wang,Yun, AU - Huang,Shao-Zhuan, AU - Tao,Jia-Wei, AU - Ma,Xiao-Ting, AU - Hasan,Tawfique, AU - Li,Yu, AU - Xu,Yan, AU - Su,Bao-Lian, Y1 - 2016/02/11/ PY - 2016/2/12/entrez PY - 2016/2/13/pubmed PY - 2016/2/13/medline SP - 10928 EP - 37 JF - Nanoscale JO - Nanoscale VL - 8 IS - 21 N2 - Engineering hierarchical structures of electrode materials is a powerful strategy for optimizing the electrochemical performance of an anode material for lithium-ion batteries (LIBs). Herein, we report the fabrication of hierarchical TiO2/C nanocomposite monoliths by mediated mineralization and carbonization using bacterial cellulose (BC) as a scaffolding template as well as a carbon source. TiO2/C has a robust scaffolding architecture, a mesopore-macropore network and TiO2-C heterostructure. TiO2/C-500, obtained by calcination at 500 °C in nitrogen, contains an anatase TiO2-C heterostructure with a specific surface area of 66.5 m(2) g(-1). When evaluated as an anode material at 0.5 C, TiO2/C-500 exhibits a high and reversible lithium storage capacity of 188 mA h g(-1), an excellent initial capacity of 283 mA h g(-1), a long cycle life with a 94% coulombic efficiency preserved after 200 cycles, and a very low charge transfer resistance. The superior electrochemical performance of TiO2/C-500 is attributed to the synergistic effect of high electrical conductivity, anatase TiO2-C heterostructure, mesopore-macropore network and robust scaffolding architecture. The current material strategy affords a general approach for the design of complex inorganic nanocomposites with structural stability, and tunable and interconnected hierarchical porosity that may lead to the next generation of electrochemical supercapacitors with high energy efficiency and superior power density. SN - 2040-3372 UR - https://www.unboundmedicine.com/medline/citation/26864500/Hierarchical_TiO2/C_nanocomposite_monoliths_with_a_robust_scaffolding_architecture_mesopore_macropore_network_and_TiO2_C_heterostructure_for_high_performance_lithium_ion_batteries_ L2 - https://doi.org/10.1039/c5nr09149g DB - PRIME DP - Unbound Medicine ER -
Try the Free App:
Prime PubMed app for iOS iPhone iPad
Prime PubMed app for Android
Prime PubMed is provided
free to individuals by:
Unbound Medicine.