Tags

Type your tag names separated by a space and hit enter

Transcranial direct current stimulation (tDCS) for improving activities of daily living, and physical and cognitive functioning, in people after stroke.
Cochrane Database Syst Rev. 2016 Mar 21; 3:CD009645.CD

Abstract

BACKGROUND

Stroke is one of the leading causes of disability worldwide. Functional impairment, resulting in poor performance in activities of daily living (ADLs) among stroke survivors is common. Current rehabilitation approaches have limited effectiveness in improving ADL performance, function, muscle strength and cognitive abilities (including spatial neglect) after stroke, but a possible adjunct to stroke rehabilitation might be non-invasive brain stimulation by transcranial direct current stimulation (tDCS) to modulate cortical excitability, and hence to improve ADL performance, arm and leg function, muscle strength and cognitive abilities (including spatial neglect), dropouts and adverse events in people after stroke.

OBJECTIVES

To assess the effects of tDCS on ADLs, arm and leg function, muscle strength and cognitive abilities (including spatial neglect), dropouts and adverse events in people after stroke.

SEARCH METHODS

We searched the Cochrane Stroke Group Trials Register (February 2015), the Cochrane Central Register of Controlled Trials (CENTRAL; the Cochrane Library; 2015, Issue 2), MEDLINE (1948 to February 2015), EMBASE (1980 to February 2015), CINAHL (1982 to February 2015), AMED (1985 to February 2015), Science Citation Index (1899 to February 2015) and four additional databases. In an effort to identify further published, unpublished and ongoing trials, we searched trials registers and reference lists, handsearched conference proceedings and contacted authors and equipment manufacturers.

SELECTION CRITERIA

This is the update of an existing review. In the previous version of this review we focused on the effects of tDCS on ADLs and function. In this update, we broadened our inclusion criteria to compare any kind of active tDCS for improving ADLs, function, muscle strength and cognitive abilities (including spatial neglect) versus any kind of placebo or control intervention.

DATA COLLECTION AND ANALYSIS

Two review authors independently assessed trial quality and risk of bias (JM and MP) and extracted data (BE and JM). If necessary, we contacted study authors to ask for additional information. We collected information on dropouts and adverse events from the trial reports.

MAIN RESULTS

We included 32 studies involving a total of 748 participants aged above 18 with acute, postacute or chronic ischaemic or haemorrhagic stroke. We also identified 55 ongoing studies. The risk of bias did not differ substantially for different comparisons and outcomes.We found nine studies with 396 participants examining the effects of tDCS versus sham tDCS (or any other passive intervention) on our primary outcome measure, ADLs after stroke. We found evidence of effect regarding ADL performance at the end of the intervention period (standardised mean difference (SMD) 0.24, 95% confidence interval (CI) 0.03 to 0.44; inverse variance method with random-effects model; moderate quality evidence). Six studies with 269 participants assessed the effects of tDCS on ADLs at the end of follow-up, and found improved ADL performance (SMD 0.31, 95% CI 0.01 to 0.62; inverse variance method with random-effects model; moderate quality evidence). However, the results did not persist in a sensitivity analysis including only trials of good methodological quality.One of our secondary outcome measures was upper extremity function: 12 trials with a total of 431 participants measured upper extremity function at the end of the intervention period, revealing no evidence of an effect in favour of tDCS (SMD 0.01, 95% CI -0.48 to 0.50 for studies presenting absolute values (low quality evidence) and SMD 0.32, 95% CI -0.51 to 1.15 (low quality evidence) for studies presenting change values; inverse variance method with random-effects model). Regarding the effects of tDCS on upper extremity function at the end of follow-up, we identified four studies with a total of 187 participants (absolute values) that showed no evidence of an effect (SMD 0.01, 95% CI -0.48 to 0.50; inverse variance method with random-effects model; low quality evidence). Ten studies with 313 participants reported outcome data for muscle strength at the end of the intervention period, but in the corresponding meta-analysis there was no evidence of an effect. Three studies with 156 participants reported outcome data on muscle strength at follow-up, but there was no evidence of an effect.In six of 23 studies (26%), dropouts, adverse events or deaths that occurred during the intervention period were reported, and the proportions of dropouts and adverse events were comparable between groups (risk difference (RD) 0.01, 95% CI -0.02 to 0.03; Mantel-Haenszel method with random-effects model; low quality evidence; analysis based only on studies that reported either on dropouts, or on adverse events, or on both). However, this effect may be underestimated due to reporting bias.

AUTHORS' CONCLUSIONS

At the moment, evidence of very low to moderate quality is available on the effectiveness of tDCS (anodal/cathodal/dual) versus control (sham/any other intervention) for improving ADL performance after stroke. However, there are many ongoing randomised trials that could change the quality of evidence in the future. Future studies should particularly engage those who may benefit most from tDCS after stroke and in the effects of tDCS on upper and lower limb function, muscle strength and cognitive abilities (including spatial neglect). Dropouts and adverse events should be routinely monitored and presented as secondary outcomes. They should also address methodological issues by adhering to the Consolidated Standards of Reporting Trials (CONSORT) statement.

Authors+Show Affiliations

Department of Public Health, Dresden Medical School, Technical University Dresden, Fetscherstr. 74, Dresden, Sachsen, Germany, 01307.No affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Meta-Analysis
Research Support, Non-U.S. Gov't
Review
Systematic Review

Language

eng

PubMed ID

26996760

Citation

Elsner, Bernhard, et al. "Transcranial Direct Current Stimulation (tDCS) for Improving Activities of Daily Living, and Physical and Cognitive Functioning, in People After Stroke." The Cochrane Database of Systematic Reviews, vol. 3, 2016, p. CD009645.
Elsner B, Kugler J, Pohl M, et al. Transcranial direct current stimulation (tDCS) for improving activities of daily living, and physical and cognitive functioning, in people after stroke. Cochrane Database Syst Rev. 2016;3:CD009645.
Elsner, B., Kugler, J., Pohl, M., & Mehrholz, J. (2016). Transcranial direct current stimulation (tDCS) for improving activities of daily living, and physical and cognitive functioning, in people after stroke. The Cochrane Database of Systematic Reviews, 3, CD009645. https://doi.org/10.1002/14651858.CD009645.pub3
Elsner B, et al. Transcranial Direct Current Stimulation (tDCS) for Improving Activities of Daily Living, and Physical and Cognitive Functioning, in People After Stroke. Cochrane Database Syst Rev. 2016 Mar 21;3:CD009645. PubMed PMID: 26996760.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Transcranial direct current stimulation (tDCS) for improving activities of daily living, and physical and cognitive functioning, in people after stroke. AU - Elsner,Bernhard, AU - Kugler,Joachim, AU - Pohl,Marcus, AU - Mehrholz,Jan, Y1 - 2016/03/21/ PY - 2016/3/22/entrez PY - 2016/3/22/pubmed PY - 2016/7/7/medline SP - CD009645 EP - CD009645 JF - The Cochrane database of systematic reviews JO - Cochrane Database Syst Rev VL - 3 N2 - BACKGROUND: Stroke is one of the leading causes of disability worldwide. Functional impairment, resulting in poor performance in activities of daily living (ADLs) among stroke survivors is common. Current rehabilitation approaches have limited effectiveness in improving ADL performance, function, muscle strength and cognitive abilities (including spatial neglect) after stroke, but a possible adjunct to stroke rehabilitation might be non-invasive brain stimulation by transcranial direct current stimulation (tDCS) to modulate cortical excitability, and hence to improve ADL performance, arm and leg function, muscle strength and cognitive abilities (including spatial neglect), dropouts and adverse events in people after stroke. OBJECTIVES: To assess the effects of tDCS on ADLs, arm and leg function, muscle strength and cognitive abilities (including spatial neglect), dropouts and adverse events in people after stroke. SEARCH METHODS: We searched the Cochrane Stroke Group Trials Register (February 2015), the Cochrane Central Register of Controlled Trials (CENTRAL; the Cochrane Library; 2015, Issue 2), MEDLINE (1948 to February 2015), EMBASE (1980 to February 2015), CINAHL (1982 to February 2015), AMED (1985 to February 2015), Science Citation Index (1899 to February 2015) and four additional databases. In an effort to identify further published, unpublished and ongoing trials, we searched trials registers and reference lists, handsearched conference proceedings and contacted authors and equipment manufacturers. SELECTION CRITERIA: This is the update of an existing review. In the previous version of this review we focused on the effects of tDCS on ADLs and function. In this update, we broadened our inclusion criteria to compare any kind of active tDCS for improving ADLs, function, muscle strength and cognitive abilities (including spatial neglect) versus any kind of placebo or control intervention. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed trial quality and risk of bias (JM and MP) and extracted data (BE and JM). If necessary, we contacted study authors to ask for additional information. We collected information on dropouts and adverse events from the trial reports. MAIN RESULTS: We included 32 studies involving a total of 748 participants aged above 18 with acute, postacute or chronic ischaemic or haemorrhagic stroke. We also identified 55 ongoing studies. The risk of bias did not differ substantially for different comparisons and outcomes.We found nine studies with 396 participants examining the effects of tDCS versus sham tDCS (or any other passive intervention) on our primary outcome measure, ADLs after stroke. We found evidence of effect regarding ADL performance at the end of the intervention period (standardised mean difference (SMD) 0.24, 95% confidence interval (CI) 0.03 to 0.44; inverse variance method with random-effects model; moderate quality evidence). Six studies with 269 participants assessed the effects of tDCS on ADLs at the end of follow-up, and found improved ADL performance (SMD 0.31, 95% CI 0.01 to 0.62; inverse variance method with random-effects model; moderate quality evidence). However, the results did not persist in a sensitivity analysis including only trials of good methodological quality.One of our secondary outcome measures was upper extremity function: 12 trials with a total of 431 participants measured upper extremity function at the end of the intervention period, revealing no evidence of an effect in favour of tDCS (SMD 0.01, 95% CI -0.48 to 0.50 for studies presenting absolute values (low quality evidence) and SMD 0.32, 95% CI -0.51 to 1.15 (low quality evidence) for studies presenting change values; inverse variance method with random-effects model). Regarding the effects of tDCS on upper extremity function at the end of follow-up, we identified four studies with a total of 187 participants (absolute values) that showed no evidence of an effect (SMD 0.01, 95% CI -0.48 to 0.50; inverse variance method with random-effects model; low quality evidence). Ten studies with 313 participants reported outcome data for muscle strength at the end of the intervention period, but in the corresponding meta-analysis there was no evidence of an effect. Three studies with 156 participants reported outcome data on muscle strength at follow-up, but there was no evidence of an effect.In six of 23 studies (26%), dropouts, adverse events or deaths that occurred during the intervention period were reported, and the proportions of dropouts and adverse events were comparable between groups (risk difference (RD) 0.01, 95% CI -0.02 to 0.03; Mantel-Haenszel method with random-effects model; low quality evidence; analysis based only on studies that reported either on dropouts, or on adverse events, or on both). However, this effect may be underestimated due to reporting bias. AUTHORS' CONCLUSIONS: At the moment, evidence of very low to moderate quality is available on the effectiveness of tDCS (anodal/cathodal/dual) versus control (sham/any other intervention) for improving ADL performance after stroke. However, there are many ongoing randomised trials that could change the quality of evidence in the future. Future studies should particularly engage those who may benefit most from tDCS after stroke and in the effects of tDCS on upper and lower limb function, muscle strength and cognitive abilities (including spatial neglect). Dropouts and adverse events should be routinely monitored and presented as secondary outcomes. They should also address methodological issues by adhering to the Consolidated Standards of Reporting Trials (CONSORT) statement. SN - 1469-493X UR - https://www.unboundmedicine.com/medline/citation/26996760/Transcranial_direct_current_stimulation__tDCS__for_improving_activities_of_daily_living_and_physical_and_cognitive_functioning_in_people_after_stroke_ L2 - https://doi.org/10.1002/14651858.CD009645.pub3 DB - PRIME DP - Unbound Medicine ER -