Tags

Type your tag names separated by a space and hit enter

Transcatheter Myocardial Needle Chemoablation During Real-Time Magnetic Resonance Imaging: A New Approach to Ablation Therapy for Rhythm Disorders.
Circ Arrhythm Electrophysiol. 2016 Apr; 9(4):e003926.CA

Abstract

BACKGROUND

Radiofrequency ablation for ventricular arrhythmias is limited by inability to visualize tissue destruction, by reversible conduction block resulting from edema surrounding lesions, and by insufficient lesion depth. We hypothesized that transcatheter needle injection of caustic agents doped with gadolinium contrast under real-time magnetic resonance imaging (MRI) could achieve deep, targeted, and irreversible myocardial ablation, which would be immediately visible.

METHODS AND RESULTS

Under real-time MRI guidance, ethanol or acetic acid was injected into the myocardium of 8 swine using MRI-conspicuous needle catheters. Chemoablation lesions had identical geometry by in vivo and ex vivo MRI and histopathology, both immediately and after 12 (7-17) days. Ethanol caused stellate lesions with patchy areas of normal myocardium, whereas acetic acid caused homogeneous circumscribed lesions of irreversible necrosis. Ischemic cardiomyopathy was created in 10 additional swine by subselective transcoronary ethanol administration into noncontiguous territories. After 12 (8-15) days, real-time MRI-guided chemoablation-with 2 to 5 injections to create a linear lesion-successfully eliminated the isthmus and local abnormal voltage activities.

CONCLUSIONS

Real-time MRI-guided chemoablation with acetic acid enabled the intended arrhythmic substrate, whether deep or superficial, to be visualized immediately and ablated irreversibly. In an animal model of ischemic cardiomyopathy, obliteration of a conductive isthmus both anatomically and functionally and abolition of local abnormal voltage activities in areas of heterogeneous scar were feasible. This represents the first report of MRI-guided myocardial chemoablation, an approach that could improve the efficacy of arrhythmic substrate ablation in the thick ventricular myocardium.

Authors+Show Affiliations

From the Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart Lung and Blood Institute (T.R., W.H.S., J.R.M., A.C.-W., M.S., A.Z.F., K.R., R.J.L.) and Division of Veterinary Resources (M.A.E.), National Institutes of Health, Bethesda, MD; Global Medical Affairs (S.M.) and Therapy Development (S.K.), St Jude Medical, St Paul, MN; and Department of Cardiology, Children's National Medical Center, Washington, DC (K.R.).From the Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart Lung and Blood Institute (T.R., W.H.S., J.R.M., A.C.-W., M.S., A.Z.F., K.R., R.J.L.) and Division of Veterinary Resources (M.A.E.), National Institutes of Health, Bethesda, MD; Global Medical Affairs (S.M.) and Therapy Development (S.K.), St Jude Medical, St Paul, MN; and Department of Cardiology, Children's National Medical Center, Washington, DC (K.R.).From the Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart Lung and Blood Institute (T.R., W.H.S., J.R.M., A.C.-W., M.S., A.Z.F., K.R., R.J.L.) and Division of Veterinary Resources (M.A.E.), National Institutes of Health, Bethesda, MD; Global Medical Affairs (S.M.) and Therapy Development (S.K.), St Jude Medical, St Paul, MN; and Department of Cardiology, Children's National Medical Center, Washington, DC (K.R.).From the Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart Lung and Blood Institute (T.R., W.H.S., J.R.M., A.C.-W., M.S., A.Z.F., K.R., R.J.L.) and Division of Veterinary Resources (M.A.E.), National Institutes of Health, Bethesda, MD; Global Medical Affairs (S.M.) and Therapy Development (S.K.), St Jude Medical, St Paul, MN; and Department of Cardiology, Children's National Medical Center, Washington, DC (K.R.).From the Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart Lung and Blood Institute (T.R., W.H.S., J.R.M., A.C.-W., M.S., A.Z.F., K.R., R.J.L.) and Division of Veterinary Resources (M.A.E.), National Institutes of Health, Bethesda, MD; Global Medical Affairs (S.M.) and Therapy Development (S.K.), St Jude Medical, St Paul, MN; and Department of Cardiology, Children's National Medical Center, Washington, DC (K.R.).From the Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart Lung and Blood Institute (T.R., W.H.S., J.R.M., A.C.-W., M.S., A.Z.F., K.R., R.J.L.) and Division of Veterinary Resources (M.A.E.), National Institutes of Health, Bethesda, MD; Global Medical Affairs (S.M.) and Therapy Development (S.K.), St Jude Medical, St Paul, MN; and Department of Cardiology, Children's National Medical Center, Washington, DC (K.R.).From the Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart Lung and Blood Institute (T.R., W.H.S., J.R.M., A.C.-W., M.S., A.Z.F., K.R., R.J.L.) and Division of Veterinary Resources (M.A.E.), National Institutes of Health, Bethesda, MD; Global Medical Affairs (S.M.) and Therapy Development (S.K.), St Jude Medical, St Paul, MN; and Department of Cardiology, Children's National Medical Center, Washington, DC (K.R.).From the Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart Lung and Blood Institute (T.R., W.H.S., J.R.M., A.C.-W., M.S., A.Z.F., K.R., R.J.L.) and Division of Veterinary Resources (M.A.E.), National Institutes of Health, Bethesda, MD; Global Medical Affairs (S.M.) and Therapy Development (S.K.), St Jude Medical, St Paul, MN; and Department of Cardiology, Children's National Medical Center, Washington, DC (K.R.).From the Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart Lung and Blood Institute (T.R., W.H.S., J.R.M., A.C.-W., M.S., A.Z.F., K.R., R.J.L.) and Division of Veterinary Resources (M.A.E.), National Institutes of Health, Bethesda, MD; Global Medical Affairs (S.M.) and Therapy Development (S.K.), St Jude Medical, St Paul, MN; and Department of Cardiology, Children's National Medical Center, Washington, DC (K.R.).From the Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart Lung and Blood Institute (T.R., W.H.S., J.R.M., A.C.-W., M.S., A.Z.F., K.R., R.J.L.) and Division of Veterinary Resources (M.A.E.), National Institutes of Health, Bethesda, MD; Global Medical Affairs (S.M.) and Therapy Development (S.K.), St Jude Medical, St Paul, MN; and Department of Cardiology, Children's National Medical Center, Washington, DC (K.R.).From the Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart Lung and Blood Institute (T.R., W.H.S., J.R.M., A.C.-W., M.S., A.Z.F., K.R., R.J.L.) and Division of Veterinary Resources (M.A.E.), National Institutes of Health, Bethesda, MD; Global Medical Affairs (S.M.) and Therapy Development (S.K.), St Jude Medical, St Paul, MN; and Department of Cardiology, Children's National Medical Center, Washington, DC (K.R.). lederman@nih.gov.

Pub Type(s)

Journal Article
Research Support, N.I.H., Extramural

Language

eng

PubMed ID

27053637

Citation

Rogers, Toby, et al. "Transcatheter Myocardial Needle Chemoablation During Real-Time Magnetic Resonance Imaging: a New Approach to Ablation Therapy for Rhythm Disorders." Circulation. Arrhythmia and Electrophysiology, vol. 9, no. 4, 2016, pp. e003926.
Rogers T, Mahapatra S, Kim S, et al. Transcatheter Myocardial Needle Chemoablation During Real-Time Magnetic Resonance Imaging: A New Approach to Ablation Therapy for Rhythm Disorders. Circ Arrhythm Electrophysiol. 2016;9(4):e003926.
Rogers, T., Mahapatra, S., Kim, S., Eckhaus, M. A., Schenke, W. H., Mazal, J. R., Campbell-Washburn, A., Sonmez, M., Faranesh, A. Z., Ratnayaka, K., & Lederman, R. J. (2016). Transcatheter Myocardial Needle Chemoablation During Real-Time Magnetic Resonance Imaging: A New Approach to Ablation Therapy for Rhythm Disorders. Circulation. Arrhythmia and Electrophysiology, 9(4), e003926. https://doi.org/10.1161/CIRCEP.115.003926
Rogers T, et al. Transcatheter Myocardial Needle Chemoablation During Real-Time Magnetic Resonance Imaging: a New Approach to Ablation Therapy for Rhythm Disorders. Circ Arrhythm Electrophysiol. 2016;9(4):e003926. PubMed PMID: 27053637.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Transcatheter Myocardial Needle Chemoablation During Real-Time Magnetic Resonance Imaging: A New Approach to Ablation Therapy for Rhythm Disorders. AU - Rogers,Toby, AU - Mahapatra,Srijoy, AU - Kim,Steven, AU - Eckhaus,Michael A, AU - Schenke,William H, AU - Mazal,Jonathan R, AU - Campbell-Washburn,Adrienne, AU - Sonmez,Merdim, AU - Faranesh,Anthony Z, AU - Ratnayaka,Kanishka, AU - Lederman,Robert J, PY - 2015/07/27/received PY - 2016/03/07/accepted PY - 2016/4/8/entrez PY - 2016/4/8/pubmed PY - 2016/8/3/medline KW - cardiac electrophysiology KW - catheter ablation KW - electrophysiology KW - magnetic resonance imaging KW - magnetic resonance imaging, interventional KW - tachycardia, ventricular SP - e003926 EP - e003926 JF - Circulation. Arrhythmia and electrophysiology JO - Circ Arrhythm Electrophysiol VL - 9 IS - 4 N2 - BACKGROUND: Radiofrequency ablation for ventricular arrhythmias is limited by inability to visualize tissue destruction, by reversible conduction block resulting from edema surrounding lesions, and by insufficient lesion depth. We hypothesized that transcatheter needle injection of caustic agents doped with gadolinium contrast under real-time magnetic resonance imaging (MRI) could achieve deep, targeted, and irreversible myocardial ablation, which would be immediately visible. METHODS AND RESULTS: Under real-time MRI guidance, ethanol or acetic acid was injected into the myocardium of 8 swine using MRI-conspicuous needle catheters. Chemoablation lesions had identical geometry by in vivo and ex vivo MRI and histopathology, both immediately and after 12 (7-17) days. Ethanol caused stellate lesions with patchy areas of normal myocardium, whereas acetic acid caused homogeneous circumscribed lesions of irreversible necrosis. Ischemic cardiomyopathy was created in 10 additional swine by subselective transcoronary ethanol administration into noncontiguous territories. After 12 (8-15) days, real-time MRI-guided chemoablation-with 2 to 5 injections to create a linear lesion-successfully eliminated the isthmus and local abnormal voltage activities. CONCLUSIONS: Real-time MRI-guided chemoablation with acetic acid enabled the intended arrhythmic substrate, whether deep or superficial, to be visualized immediately and ablated irreversibly. In an animal model of ischemic cardiomyopathy, obliteration of a conductive isthmus both anatomically and functionally and abolition of local abnormal voltage activities in areas of heterogeneous scar were feasible. This represents the first report of MRI-guided myocardial chemoablation, an approach that could improve the efficacy of arrhythmic substrate ablation in the thick ventricular myocardium. SN - 1941-3084 UR - https://www.unboundmedicine.com/medline/citation/27053637/Transcatheter_Myocardial_Needle_Chemoablation_During_Real_Time_Magnetic_Resonance_Imaging:_A_New_Approach_to_Ablation_Therapy_for_Rhythm_Disorders_ DB - PRIME DP - Unbound Medicine ER -