Tags

Type your tag names separated by a space and hit enter

Virulence Gene Profiles and Clonal Relationships of Escherichia coli O26:H11 Isolates from Feedlot Cattle as Determined by Whole-Genome Sequencing.
Appl Environ Microbiol. 2016 07 01; 82(13):3900-3912.AE

Abstract

Escherichia coli O26 is the second most important enterohemorrhagic E. coli (EHEC) serogroup worldwide. Serogroup O26 strains are categorized mainly into two groups: enteropathogenic (EPEC) O26, carrying a locus of enterocyte effacement (LEE) and mostly causing mild diarrhea, and Shiga-toxigenic (STEC) O26, which carries the Shiga toxin (STX) gene (stx), responsible for more severe outcomes. stx-negative O26 strains can be further split into two groups. One O26 group differs significantly from O26 EHEC, while the other O26 EHEC-like group shows all the characteristics of EHEC O26 except production of STX. In order to determine the different populations of O26 E. coli present in U.S. cattle, we sequenced 42 O26:H11 strains isolated from feedlot cattle and compared them to 37 O26:H11 genomes available in GenBank. Phylogenetic analysis by whole-genome multilocus sequence typing (wgMLST) showed that O26:H11/H(-) strains in U.S. cattle were highly diverse. Most strains were sequence type 29 (ST29). By wgMLST, two clear lineages could be distinguished among cattle strains. Lineage 1 consisted of O26:H11 EHEC-like strains (ST29) (4 strains) and O26:H11 EHEC strains (ST21) (2 strains), and lineage 2 (36 strains) consisted of O26:H11 EPEC strains (ST29). Overall, our analysis showed U.S. cattle carried pathogenic (ST21; stx1 (+) ehxA(+) toxB(+)) and also potentially pathogenic (ST29; ehxA(+) toxB(+)) O26:H11 E. coli strains. Furthermore, in silico analysis showed that 70% of the cattle strains carried at least one antimicrobial resistance gene. Our results showed that whole-genome sequence analysis is a robust and valid approach to identify and genetically characterize E. coli O26:H11, which is of importance for food safety and public health.

IMPORTANCE

Escherichia coli O26 is the second most important type of enterohemorrhagic E. coli (EHEC) worldwide. Serogroup O26 strains are categorized into two groups: enteropathogenic (EPEC) carrying LEE, causing mild diarrhea, and Shiga toxigenic (STEC) carrying the stx gene, responsible for more severe outcomes. However, there are currently problems in distinguishing one group from the other. Furthermore, several O26 stx-negative strains are consistently misidentified as either EHEC-like or EPEC. The use of whole-genome sequence (WGS) analysis of O26 strains from cattle in the United States (i) allowed identification of O26 strains present in U.S. cattle, (ii) determined O26 strain diversity, (iii) solved the misidentification problem, and (iv) screened for the presence of antimicrobial resistance and virulence genes in the strains. This study provided a framework showing how to easily and rapidly use WGS information to identify and genetically characterize E. coli O26:H11, which is important for food safety and public health.

Authors+Show Affiliations

Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland, USA narjol.gonzalez-escalona@fda.hhs.gov.Instituto de Nutricion y Tecnologia de los Alimentos, Universidad de Chile, Santiago, Chile.Joint Institute for Food Safety and Applied Nutrition and Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA.Joint Institute for Food Safety and Applied Nutrition and Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA.Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA.Joint Institute for Food Safety and Applied Nutrition and Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA.

Pub Type(s)

Journal Article

Language

eng

PubMed ID

27107118

Citation

Gonzalez-Escalona, Narjol, et al. "Virulence Gene Profiles and Clonal Relationships of Escherichia Coli O26:H11 Isolates From Feedlot Cattle as Determined By Whole-Genome Sequencing." Applied and Environmental Microbiology, vol. 82, no. 13, 2016, pp. 3900-3912.
Gonzalez-Escalona N, Toro M, Rump LV, et al. Virulence Gene Profiles and Clonal Relationships of Escherichia coli O26:H11 Isolates from Feedlot Cattle as Determined by Whole-Genome Sequencing. Appl Environ Microbiol. 2016;82(13):3900-3912.
Gonzalez-Escalona, N., Toro, M., Rump, L. V., Cao, G., Nagaraja, T. G., & Meng, J. (2016). Virulence Gene Profiles and Clonal Relationships of Escherichia coli O26:H11 Isolates from Feedlot Cattle as Determined by Whole-Genome Sequencing. Applied and Environmental Microbiology, 82(13), 3900-3912. https://doi.org/10.1128/AEM.00498-16
Gonzalez-Escalona N, et al. Virulence Gene Profiles and Clonal Relationships of Escherichia Coli O26:H11 Isolates From Feedlot Cattle as Determined By Whole-Genome Sequencing. Appl Environ Microbiol. 2016 07 1;82(13):3900-3912. PubMed PMID: 27107118.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Virulence Gene Profiles and Clonal Relationships of Escherichia coli O26:H11 Isolates from Feedlot Cattle as Determined by Whole-Genome Sequencing. AU - Gonzalez-Escalona,Narjol, AU - Toro,Magaly, AU - Rump,Lydia V, AU - Cao,Guojie, AU - Nagaraja,T G, AU - Meng,Jianghong, Y1 - 2016/06/13/ PY - 2016/02/16/received PY - 2016/04/15/accepted PY - 2016/4/24/entrez PY - 2016/4/24/pubmed PY - 2017/10/11/medline SP - 3900 EP - 3912 JF - Applied and environmental microbiology JO - Appl Environ Microbiol VL - 82 IS - 13 N2 - UNLABELLED: Escherichia coli O26 is the second most important enterohemorrhagic E. coli (EHEC) serogroup worldwide. Serogroup O26 strains are categorized mainly into two groups: enteropathogenic (EPEC) O26, carrying a locus of enterocyte effacement (LEE) and mostly causing mild diarrhea, and Shiga-toxigenic (STEC) O26, which carries the Shiga toxin (STX) gene (stx), responsible for more severe outcomes. stx-negative O26 strains can be further split into two groups. One O26 group differs significantly from O26 EHEC, while the other O26 EHEC-like group shows all the characteristics of EHEC O26 except production of STX. In order to determine the different populations of O26 E. coli present in U.S. cattle, we sequenced 42 O26:H11 strains isolated from feedlot cattle and compared them to 37 O26:H11 genomes available in GenBank. Phylogenetic analysis by whole-genome multilocus sequence typing (wgMLST) showed that O26:H11/H(-) strains in U.S. cattle were highly diverse. Most strains were sequence type 29 (ST29). By wgMLST, two clear lineages could be distinguished among cattle strains. Lineage 1 consisted of O26:H11 EHEC-like strains (ST29) (4 strains) and O26:H11 EHEC strains (ST21) (2 strains), and lineage 2 (36 strains) consisted of O26:H11 EPEC strains (ST29). Overall, our analysis showed U.S. cattle carried pathogenic (ST21; stx1 (+) ehxA(+) toxB(+)) and also potentially pathogenic (ST29; ehxA(+) toxB(+)) O26:H11 E. coli strains. Furthermore, in silico analysis showed that 70% of the cattle strains carried at least one antimicrobial resistance gene. Our results showed that whole-genome sequence analysis is a robust and valid approach to identify and genetically characterize E. coli O26:H11, which is of importance for food safety and public health. IMPORTANCE: Escherichia coli O26 is the second most important type of enterohemorrhagic E. coli (EHEC) worldwide. Serogroup O26 strains are categorized into two groups: enteropathogenic (EPEC) carrying LEE, causing mild diarrhea, and Shiga toxigenic (STEC) carrying the stx gene, responsible for more severe outcomes. However, there are currently problems in distinguishing one group from the other. Furthermore, several O26 stx-negative strains are consistently misidentified as either EHEC-like or EPEC. The use of whole-genome sequence (WGS) analysis of O26 strains from cattle in the United States (i) allowed identification of O26 strains present in U.S. cattle, (ii) determined O26 strain diversity, (iii) solved the misidentification problem, and (iv) screened for the presence of antimicrobial resistance and virulence genes in the strains. This study provided a framework showing how to easily and rapidly use WGS information to identify and genetically characterize E. coli O26:H11, which is important for food safety and public health. SN - 1098-5336 UR - https://www.unboundmedicine.com/medline/citation/27107118/Virulence_Gene_Profiles_and_Clonal_Relationships_of_Escherichia_coli_O26:H11_Isolates_from_Feedlot_Cattle_as_Determined_by_Whole_Genome_Sequencing_ L2 - http://aem.asm.org/cgi/pmidlookup?view=long&pmid=27107118 DB - PRIME DP - Unbound Medicine ER -