Tags

Type your tag names separated by a space and hit enter

A comparison of the effects of silver nanoparticles and silver nitrate on a suite of soil dwelling organisms in two field soils.
Nanotoxicology. 2016 10; 10(8):1144-51.N

Abstract

Nanomaterials are increasingly used in a wide range of products, leading to growing concern of their environmental fate. In order to understand the fate and effects of silver nanoparticles in the soil environment, a suite of toxicity tests including: plant growth with Elymus lanceolatus (northern wheatgrass) and Trifolium pratense (red clover); collembolan survival and reproduction (Folsomia candida); and earthworm avoidance, survival and reproduction (Eisenia andrei) was conducted. The effect of silver nanoparticles (AgNP) was compared with the effect of ionic silver (as AgNO3) in two agricultural field soils (a sandy loam and a silt loam). Lethal (LC50) or sub lethal (IC50) effect levels are presented for all endpoints and demonstrate that in most cases AgNO3 (i.e. ionic silver) was found to be more toxic than the AgNP across test species. The difference in effects observed between the two forms of silver varied based on test species, endpoint and soil type. In tests that were conducted across different soil types, organisms in the sandier soil had a greater response to the Ag (ionic and nano) than those in soil with a high silt content. Earthworms (avoidance behavior and reproduction) were the most sensitive to both AgNP and AgNO3, while plant emergence was the least sensitive endpoint to both forms of Ag. The use of a test battery approach using natural field soils demonstrates the need to better quantify the dissolution and transformation products of nanomaterials in order to understand the fate and effects of these materials in the soil environment.

Authors+Show Affiliations

a Biological Assessment and Standardization Section, Environment and Climate Change Canada , Ottawa , ON , Canada.a Biological Assessment and Standardization Section, Environment and Climate Change Canada , Ottawa , ON , Canada.a Biological Assessment and Standardization Section, Environment and Climate Change Canada , Ottawa , ON , Canada.a Biological Assessment and Standardization Section, Environment and Climate Change Canada , Ottawa , ON , Canada.

Pub Type(s)

Comparative Study
Journal Article

Language

eng

PubMed ID

27108659

Citation

Velicogna, Jessica R., et al. "A Comparison of the Effects of Silver Nanoparticles and Silver Nitrate On a Suite of Soil Dwelling Organisms in Two Field Soils." Nanotoxicology, vol. 10, no. 8, 2016, pp. 1144-51.
Velicogna JR, Ritchie EE, Scroggins RP, et al. A comparison of the effects of silver nanoparticles and silver nitrate on a suite of soil dwelling organisms in two field soils. Nanotoxicology. 2016;10(8):1144-51.
Velicogna, J. R., Ritchie, E. E., Scroggins, R. P., & Princz, J. I. (2016). A comparison of the effects of silver nanoparticles and silver nitrate on a suite of soil dwelling organisms in two field soils. Nanotoxicology, 10(8), 1144-51. https://doi.org/10.1080/17435390.2016.1181807
Velicogna JR, et al. A Comparison of the Effects of Silver Nanoparticles and Silver Nitrate On a Suite of Soil Dwelling Organisms in Two Field Soils. Nanotoxicology. 2016;10(8):1144-51. PubMed PMID: 27108659.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - A comparison of the effects of silver nanoparticles and silver nitrate on a suite of soil dwelling organisms in two field soils. AU - Velicogna,Jessica R, AU - Ritchie,Ellyn E, AU - Scroggins,Richard P, AU - Princz,Juliska I, Y1 - 2016/05/16/ PY - 2016/4/26/entrez PY - 2016/4/26/pubmed PY - 2017/6/24/medline KW - Environmental risk assessment KW - invertebrates KW - nanomaterials KW - plants KW - soil ecotoxicology SP - 1144 EP - 51 JF - Nanotoxicology JO - Nanotoxicology VL - 10 IS - 8 N2 - Nanomaterials are increasingly used in a wide range of products, leading to growing concern of their environmental fate. In order to understand the fate and effects of silver nanoparticles in the soil environment, a suite of toxicity tests including: plant growth with Elymus lanceolatus (northern wheatgrass) and Trifolium pratense (red clover); collembolan survival and reproduction (Folsomia candida); and earthworm avoidance, survival and reproduction (Eisenia andrei) was conducted. The effect of silver nanoparticles (AgNP) was compared with the effect of ionic silver (as AgNO3) in two agricultural field soils (a sandy loam and a silt loam). Lethal (LC50) or sub lethal (IC50) effect levels are presented for all endpoints and demonstrate that in most cases AgNO3 (i.e. ionic silver) was found to be more toxic than the AgNP across test species. The difference in effects observed between the two forms of silver varied based on test species, endpoint and soil type. In tests that were conducted across different soil types, organisms in the sandier soil had a greater response to the Ag (ionic and nano) than those in soil with a high silt content. Earthworms (avoidance behavior and reproduction) were the most sensitive to both AgNP and AgNO3, while plant emergence was the least sensitive endpoint to both forms of Ag. The use of a test battery approach using natural field soils demonstrates the need to better quantify the dissolution and transformation products of nanomaterials in order to understand the fate and effects of these materials in the soil environment. SN - 1743-5404 UR - https://www.unboundmedicine.com/medline/citation/27108659/A_comparison_of_the_effects_of_silver_nanoparticles_and_silver_nitrate_on_a_suite_of_soil_dwelling_organisms_in_two_field_soils_ L2 - https://www.tandfonline.com/doi/full/10.1080/17435390.2016.1181807 DB - PRIME DP - Unbound Medicine ER -