Tags

Type your tag names separated by a space and hit enter

PHYTOCHEMISTRY, ANTIOXIDATIVE ACTIVITY AND INHIBITION OF KEY ENZYMES LINKED TO TYPE 2 DIABETES BY VARIOUS PARTS OF AFRAMOMUM MELEGUETA IN VITRO.
Acta Pol Pharm. 2016 Mar-Apr; 73(2):403-17.AP

Abstract

This study investigated and compared the antioxidative, antidiabetic effects and possible active compounds present in various solvent extracts of fruit, leaf and stem of Aframomum melegueta (Rosc.) K. Schum. Samples were sequentially extracted using solvents of increasing polarity. They were investigated for 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, ferric reducing power, inhibition of hemoglobin glycosylation, α-amylase and α-glucosidase activities as markers of in vitro antidiabetic effects at various doses (30-240 μg/mL). Possible compounds were analyzed using gas chromatography-mass spectrometry (GC-MS) analysis. From the results, fruit ethanolic (EtOH) extract showed higher total polyphenol (12.52 ± 0.13 mg/g GAE) and flavonoid (4.92 ± 0.12 mg/g QE) contents compared to other extracts. Similarly, for all the in vitro models used in this study, fruit EtOH extract exhibited lower IC50 values compared to other extracts, comparable to standards used in this study (DPPH 0.04 ± 0.01 mg/mL; ascorbic acid: 0.03 ± 0.02 mg/mL; gallic acid: 0.05 ± 0.01 mg/mL; hemoglobin glycosylation: 0.7 2 ± 0.03 mg/mL; gallic acid: 0.20 ± 0.01 mg/mL; α-amylase: 0.62 ± 0.01 mg/mL; acarbose: 4.91 ± 0.80 mg/mL; α-glucosidase: 0.06 ± 0.01 mg/mL; acarbose: 0.34 ± 0.02 mg/mL). Additionally, EtOH extract of the fruit demonstrated significantly (p < 0.05) higher reducing potentials of Fe3+ to Fe2+ compared to other solvent extracts. The GC-MS analysis of fruit and leaf EtOH extracts revealed the presence of some phenolics and other fatty acids derivatives as possible compounds present. Conclusively, fruit EtOH extract exhibited higher antioxidative and antidiabetic effects compared to other solvent extracts in vitro and thus require further work to fully validate these effects in vivo.

Authors

No affiliation info availableNo affiliation info availableNo affiliation info available

Pub Type(s)

Comparative Study
Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

27180433

Citation

Mohammed, Aminu, et al. "PHYTOCHEMISTRY, ANTIOXIDATIVE ACTIVITY and INHIBITION of KEY ENZYMES LINKED to TYPE 2 DIABETES BY VARIOUS PARTS of AFRAMOMUM MELEGUETA in VITRO." Acta Poloniae Pharmaceutica, vol. 73, no. 2, 2016, pp. 403-17.
Mohammed A, Koorbanally NA, Islam MS. PHYTOCHEMISTRY, ANTIOXIDATIVE ACTIVITY AND INHIBITION OF KEY ENZYMES LINKED TO TYPE 2 DIABETES BY VARIOUS PARTS OF AFRAMOMUM MELEGUETA IN VITRO. Acta Pol Pharm. 2016;73(2):403-17.
Mohammed, A., Koorbanally, N. A., & Islam, M. S. (2016). PHYTOCHEMISTRY, ANTIOXIDATIVE ACTIVITY AND INHIBITION OF KEY ENZYMES LINKED TO TYPE 2 DIABETES BY VARIOUS PARTS OF AFRAMOMUM MELEGUETA IN VITRO. Acta Poloniae Pharmaceutica, 73(2), 403-17.
Mohammed A, Koorbanally NA, Islam MS. PHYTOCHEMISTRY, ANTIOXIDATIVE ACTIVITY and INHIBITION of KEY ENZYMES LINKED to TYPE 2 DIABETES BY VARIOUS PARTS of AFRAMOMUM MELEGUETA in VITRO. Acta Pol Pharm. 2016 Mar-Apr;73(2):403-17. PubMed PMID: 27180433.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - PHYTOCHEMISTRY, ANTIOXIDATIVE ACTIVITY AND INHIBITION OF KEY ENZYMES LINKED TO TYPE 2 DIABETES BY VARIOUS PARTS OF AFRAMOMUM MELEGUETA IN VITRO. AU - Mohammed,Aminu, AU - Koorbanally,Neil Anthony, AU - Islam,Md Shahidul, PY - 2016/5/17/entrez PY - 2016/5/18/pubmed PY - 2016/6/21/medline SP - 403 EP - 17 JF - Acta poloniae pharmaceutica JO - Acta Pol Pharm VL - 73 IS - 2 N2 - This study investigated and compared the antioxidative, antidiabetic effects and possible active compounds present in various solvent extracts of fruit, leaf and stem of Aframomum melegueta (Rosc.) K. Schum. Samples were sequentially extracted using solvents of increasing polarity. They were investigated for 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, ferric reducing power, inhibition of hemoglobin glycosylation, α-amylase and α-glucosidase activities as markers of in vitro antidiabetic effects at various doses (30-240 μg/mL). Possible compounds were analyzed using gas chromatography-mass spectrometry (GC-MS) analysis. From the results, fruit ethanolic (EtOH) extract showed higher total polyphenol (12.52 ± 0.13 mg/g GAE) and flavonoid (4.92 ± 0.12 mg/g QE) contents compared to other extracts. Similarly, for all the in vitro models used in this study, fruit EtOH extract exhibited lower IC50 values compared to other extracts, comparable to standards used in this study (DPPH 0.04 ± 0.01 mg/mL; ascorbic acid: 0.03 ± 0.02 mg/mL; gallic acid: 0.05 ± 0.01 mg/mL; hemoglobin glycosylation: 0.7 2 ± 0.03 mg/mL; gallic acid: 0.20 ± 0.01 mg/mL; α-amylase: 0.62 ± 0.01 mg/mL; acarbose: 4.91 ± 0.80 mg/mL; α-glucosidase: 0.06 ± 0.01 mg/mL; acarbose: 0.34 ± 0.02 mg/mL). Additionally, EtOH extract of the fruit demonstrated significantly (p < 0.05) higher reducing potentials of Fe3+ to Fe2+ compared to other solvent extracts. The GC-MS analysis of fruit and leaf EtOH extracts revealed the presence of some phenolics and other fatty acids derivatives as possible compounds present. Conclusively, fruit EtOH extract exhibited higher antioxidative and antidiabetic effects compared to other solvent extracts in vitro and thus require further work to fully validate these effects in vivo. SN - 0001-6837 UR - https://www.unboundmedicine.com/medline/citation/27180433/PHYTOCHEMISTRY_ANTIOXIDATIVE_ACTIVITY_AND_INHIBITION_OF_KEY_ENZYMES_LINKED_TO_TYPE_2_DIABETES_BY_VARIOUS_PARTS_OF_AFRAMOMUM_MELEGUETA_IN_VITRO_ L2 - https://medlineplus.gov/diabetesmedicines.html DB - PRIME DP - Unbound Medicine ER -