Tags

Type your tag names separated by a space and hit enter

Bacterial host and reporter gene optimization for genetically encoded whole cell biosensors.
Environ Sci Pollut Res Int. 2017 Jan; 24(1):52-65.ES

Abstract

Whole-cell biosensors based on reporter genes allow detection of toxic metals in water with high selectivity and sensitivity under laboratory conditions; nevertheless, their transfer to a commercial inline water analyzer requires specific adaptation and optimization to field conditions as well as economical considerations. We focused here on both the influence of the bacterial host and the choice of the reporter gene by following the responses of global toxicity biosensors based on constitutive bacterial promoters as well as arsenite biosensors based on the arsenite-inducible Pars promoter. We observed important variations of the bioluminescence emission levels in five different Escherichia coli strains harboring two different lux-based biosensors, suggesting that the best host strain has to be empirically selected for each new biosensor under construction. We also investigated the bioluminescence reporter gene system transferred into Deinococcus deserti, an environmental, desiccation- and radiation-tolerant bacterium that would reduce the manufacturing costs of bacterial biosensors for commercial water analyzers and open the field of biodetection in radioactive environments. We thus successfully obtained a cell survival biosensor and a metal biosensor able to detect a concentration as low as 100 nM of arsenite in D. deserti. We demonstrated that the arsenite biosensor resisted desiccation and remained functional after 7 days stored in air-dried D. deserti cells. We also report here the use of a new near-infrared (NIR) fluorescent reporter candidate, a bacteriophytochrome from the magnetotactic bacterium Magnetospirillum magneticum AMB-1, which showed a NIR fluorescent signal that remained optimal despite increasing sample turbidity, while in similar conditions, a drastic loss of the lux-based biosensors signal was observed.

Authors+Show Affiliations

CEA, DRF, BIAM, Lab Bioenerget Cellulaire, Saint-Paul-lez-Durance, 13108, France. CNRS, UMR Biol Veget and Microbiol Environ, Saint-Paul-lez-Durance, 13108, France. Aix-Marseille Université, Saint-Paul-lez-Durance, 13108, France.CEA, DRF, BIAM, Lab Bioenerget Cellulaire, Saint-Paul-lez-Durance, 13108, France. CNRS, UMR Biol Veget and Microbiol Environ, Saint-Paul-lez-Durance, 13108, France. Aix-Marseille Université, Saint-Paul-lez-Durance, 13108, France.CEA, DRF, BIAM, Lab Bioenerget Cellulaire, Saint-Paul-lez-Durance, 13108, France. CNRS, UMR Biol Veget and Microbiol Environ, Saint-Paul-lez-Durance, 13108, France. Aix-Marseille Université, Saint-Paul-lez-Durance, 13108, France.CEA, DRF, BIAM, Lab Bioenerget Cellulaire, Saint-Paul-lez-Durance, 13108, France. CNRS, UMR Biol Veget and Microbiol Environ, Saint-Paul-lez-Durance, 13108, France. Aix-Marseille Université, Saint-Paul-lez-Durance, 13108, France.Université de Lyon, Lyon, 69003, France. INSA de Lyon, Villeurbanne, 69621, France. CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, Université Lyon 1, Villeurbanne, 69622, France.Université de Lyon, Lyon, 69003, France. INSA de Lyon, Villeurbanne, 69621, France. CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, Université Lyon 1, Villeurbanne, 69622, France.CEA, DRF, BIAM, Lab Bioenerget Cellulaire, Saint-Paul-lez-Durance, 13108, France. CNRS, UMR Biol Veget and Microbiol Environ, Saint-Paul-lez-Durance, 13108, France. Aix-Marseille Université, Saint-Paul-lez-Durance, 13108, France.CEA, DRF, BIAM, Lab Bioenerget Cellulaire, Saint-Paul-lez-Durance, 13108, France. CNRS, UMR Biol Veget and Microbiol Environ, Saint-Paul-lez-Durance, 13108, France. Aix-Marseille Université, Saint-Paul-lez-Durance, 13108, France.CEA, DRF, BIAM, Lab Bioenerget Cellulaire, Saint-Paul-lez-Durance, 13108, France. CNRS, UMR Biol Veget and Microbiol Environ, Saint-Paul-lez-Durance, 13108, France. Aix-Marseille Université, Saint-Paul-lez-Durance, 13108, France.CEA, DRF, BIAM, Lab Bioenerget Cellulaire, Saint-Paul-lez-Durance, 13108, France. CNRS, UMR Biol Veget and Microbiol Environ, Saint-Paul-lez-Durance, 13108, France. Aix-Marseille Université, Saint-Paul-lez-Durance, 13108, France.CEA, DRF, BIAM, Lab Bioenerget Cellulaire, Saint-Paul-lez-Durance, 13108, France. CNRS, UMR Biol Veget and Microbiol Environ, Saint-Paul-lez-Durance, 13108, France. Aix-Marseille Université, Saint-Paul-lez-Durance, 13108, France.Université de Lyon, Lyon, 69003, France. INSA de Lyon, Villeurbanne, 69621, France. CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, Université Lyon 1, Villeurbanne, 69622, France.CEA, DRF, BIAM, Lab Bioenerget Cellulaire, Saint-Paul-lez-Durance, 13108, France. CNRS, UMR Biol Veget and Microbiol Environ, Saint-Paul-lez-Durance, 13108, France. Aix-Marseille Université, Saint-Paul-lez-Durance, 13108, France.CEA, DRF, BIAM, Lab Bioenerget Cellulaire, Saint-Paul-lez-Durance, 13108, France. nicolas.ginet@cea.fr. CNRS, UMR Biol Veget and Microbiol Environ, Saint-Paul-lez-Durance, 13108, France. nicolas.ginet@cea.fr. Aix-Marseille Université, Saint-Paul-lez-Durance, 13108, France. nicolas.ginet@cea.fr.

Pub Type(s)

Journal Article

Language

eng

PubMed ID

27234828

Citation

Brutesco, Catherine, et al. "Bacterial Host and Reporter Gene Optimization for Genetically Encoded Whole Cell Biosensors." Environmental Science and Pollution Research International, vol. 24, no. 1, 2017, pp. 52-65.
Brutesco C, Prévéral S, Escoffier C, et al. Bacterial host and reporter gene optimization for genetically encoded whole cell biosensors. Environ Sci Pollut Res Int. 2017;24(1):52-65.
Brutesco, C., Prévéral, S., Escoffier, C., Descamps, E. C. T., Prudent, E., Cayron, J., Dumas, L., Ricquebourg, M., Adryanczyk-Perrier, G., de Groot, A., Garcia, D., Rodrigue, A., Pignol, D., & Ginet, N. (2017). Bacterial host and reporter gene optimization for genetically encoded whole cell biosensors. Environmental Science and Pollution Research International, 24(1), 52-65. https://doi.org/10.1007/s11356-016-6952-2
Brutesco C, et al. Bacterial Host and Reporter Gene Optimization for Genetically Encoded Whole Cell Biosensors. Environ Sci Pollut Res Int. 2017;24(1):52-65. PubMed PMID: 27234828.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Bacterial host and reporter gene optimization for genetically encoded whole cell biosensors. AU - Brutesco,Catherine, AU - Prévéral,Sandra, AU - Escoffier,Camille, AU - Descamps,Elodie C T, AU - Prudent,Elsa, AU - Cayron,Julien, AU - Dumas,Louis, AU - Ricquebourg,Manon, AU - Adryanczyk-Perrier,Géraldine, AU - de Groot,Arjan, AU - Garcia,Daniel, AU - Rodrigue,Agnès, AU - Pignol,David, AU - Ginet,Nicolas, Y1 - 2016/05/27/ PY - 2016/02/25/received PY - 2016/05/20/accepted PY - 2016/5/29/pubmed PY - 2017/3/28/medline PY - 2016/5/29/entrez KW - Arsenite biosensor KW - Bacteriophytochrome KW - Bioluminescence KW - Deinococcus deserti KW - Desiccation KW - Near-infrared fluorescent reporter SP - 52 EP - 65 JF - Environmental science and pollution research international JO - Environ Sci Pollut Res Int VL - 24 IS - 1 N2 - Whole-cell biosensors based on reporter genes allow detection of toxic metals in water with high selectivity and sensitivity under laboratory conditions; nevertheless, their transfer to a commercial inline water analyzer requires specific adaptation and optimization to field conditions as well as economical considerations. We focused here on both the influence of the bacterial host and the choice of the reporter gene by following the responses of global toxicity biosensors based on constitutive bacterial promoters as well as arsenite biosensors based on the arsenite-inducible Pars promoter. We observed important variations of the bioluminescence emission levels in five different Escherichia coli strains harboring two different lux-based biosensors, suggesting that the best host strain has to be empirically selected for each new biosensor under construction. We also investigated the bioluminescence reporter gene system transferred into Deinococcus deserti, an environmental, desiccation- and radiation-tolerant bacterium that would reduce the manufacturing costs of bacterial biosensors for commercial water analyzers and open the field of biodetection in radioactive environments. We thus successfully obtained a cell survival biosensor and a metal biosensor able to detect a concentration as low as 100 nM of arsenite in D. deserti. We demonstrated that the arsenite biosensor resisted desiccation and remained functional after 7 days stored in air-dried D. deserti cells. We also report here the use of a new near-infrared (NIR) fluorescent reporter candidate, a bacteriophytochrome from the magnetotactic bacterium Magnetospirillum magneticum AMB-1, which showed a NIR fluorescent signal that remained optimal despite increasing sample turbidity, while in similar conditions, a drastic loss of the lux-based biosensors signal was observed. SN - 1614-7499 UR - https://www.unboundmedicine.com/medline/citation/27234828/Bacterial_host_and_reporter_gene_optimization_for_genetically_encoded_whole_cell_biosensors_ L2 - https://dx.doi.org/10.1007/s11356-016-6952-2 DB - PRIME DP - Unbound Medicine ER -