Tags

Type your tag names separated by a space and hit enter

Neuroprotective effects of syringic acid against OGD/R-induced injury in cultured hippocampal neuronal cells.
Int J Mol Med. 2016 Aug; 38(2):567-73.IJ

Abstract

Cerebral ischemic injury and treatment are important topics in neurological science. In the present study, an in vitro model of cerebral ischemia was established by subjecting primary cultures of hippocampal neuronal cells to oxygen-glucose deprivation followed by reperfusion (OGD/R), in order to evaluate the possible neuroprotective role of syringic acid (SA). The results of 3-(4,5-dimethylthiazol‑2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays showed that pre-treatment with SA (0.1, 1, 10, and 20 µM) attenuated OGD/R-induced neuronal injury in a dose-dependent manner, with evidence of increased cell viability and decreased LDH leakage. In addition, oxidative stress markers were evaluated using commercial kits, and the results demonstrated that OGD/R exposure induced distinct oxidative stress, accompanied by elevated levels of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) production, and reduced activity of the antioxidant enzyme superoxide dismutase (SOD), which were dose-dependently restored by pre-treatment with SA. In addition, the concentration of intracellular free calcium [Ca2+]i and mitochondrial membrane potential (MMP or Δψm) were determined in order to evaluate the degree of neuronal damage by performing flow cytometric analysis and observing the cells under a fluorescence microscope, respectively. We demonstrated that pre-treatment with SA inhibited elevations in [Ca2+]i, whereas it increased the MMP dose-dependently following exposure to OGD/R. Western blot analysis revealed that OGD/R promoted cell apoptosis with concomitant increases in Bax and caspase-3 expression, and reduced Bcl-2 expression, which was reversed by pre‑treatment with SA in a dose-dependent manner. Moreover, these effects were mediated through the JNK and p38 pathways, as pre‑treatment with SA inhibited the OGD/R-induced increase in phosphorylated (p-)JNK and p-p38 expression. Taken together, these results suggested that SA exerted strong neuroprotective effects in hippocampal neuronal cells, which may be attributed to the attenuation of OGD/R-induced cell injury through the JNK and p38 signaling pathways.

Authors+Show Affiliations

Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710053, P.R. China.Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710053, P.R. China.Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710053, P.R. China.Department of Neurosurgery, The Second People's Hospital of Xinxiang City, Xinxiang, Henan 453002, P.R. China.Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710053, P.R. China.Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710053, P.R. China.

Pub Type(s)

Journal Article

Language

eng

PubMed ID

27278454

Citation

Cao, Yidong, et al. "Neuroprotective Effects of Syringic Acid Against OGD/R-induced Injury in Cultured Hippocampal Neuronal Cells." International Journal of Molecular Medicine, vol. 38, no. 2, 2016, pp. 567-73.
Cao Y, Zhang L, Sun S, et al. Neuroprotective effects of syringic acid against OGD/R-induced injury in cultured hippocampal neuronal cells. Int J Mol Med. 2016;38(2):567-73.
Cao, Y., Zhang, L., Sun, S., Yi, Z., Jiang, X., & Jia, D. (2016). Neuroprotective effects of syringic acid against OGD/R-induced injury in cultured hippocampal neuronal cells. International Journal of Molecular Medicine, 38(2), 567-73. https://doi.org/10.3892/ijmm.2016.2623
Cao Y, et al. Neuroprotective Effects of Syringic Acid Against OGD/R-induced Injury in Cultured Hippocampal Neuronal Cells. Int J Mol Med. 2016;38(2):567-73. PubMed PMID: 27278454.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Neuroprotective effects of syringic acid against OGD/R-induced injury in cultured hippocampal neuronal cells. AU - Cao,Yidong, AU - Zhang,Liang, AU - Sun,Shukai, AU - Yi,Zhenheng, AU - Jiang,Xue, AU - Jia,Dong, Y1 - 2016/06/03/ PY - 2015/10/06/received PY - 2016/05/13/accepted PY - 2016/6/10/entrez PY - 2016/6/10/pubmed PY - 2017/3/7/medline SP - 567 EP - 73 JF - International journal of molecular medicine JO - Int. J. Mol. Med. VL - 38 IS - 2 N2 - Cerebral ischemic injury and treatment are important topics in neurological science. In the present study, an in vitro model of cerebral ischemia was established by subjecting primary cultures of hippocampal neuronal cells to oxygen-glucose deprivation followed by reperfusion (OGD/R), in order to evaluate the possible neuroprotective role of syringic acid (SA). The results of 3-(4,5-dimethylthiazol‑2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays showed that pre-treatment with SA (0.1, 1, 10, and 20 µM) attenuated OGD/R-induced neuronal injury in a dose-dependent manner, with evidence of increased cell viability and decreased LDH leakage. In addition, oxidative stress markers were evaluated using commercial kits, and the results demonstrated that OGD/R exposure induced distinct oxidative stress, accompanied by elevated levels of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) production, and reduced activity of the antioxidant enzyme superoxide dismutase (SOD), which were dose-dependently restored by pre-treatment with SA. In addition, the concentration of intracellular free calcium [Ca2+]i and mitochondrial membrane potential (MMP or Δψm) were determined in order to evaluate the degree of neuronal damage by performing flow cytometric analysis and observing the cells under a fluorescence microscope, respectively. We demonstrated that pre-treatment with SA inhibited elevations in [Ca2+]i, whereas it increased the MMP dose-dependently following exposure to OGD/R. Western blot analysis revealed that OGD/R promoted cell apoptosis with concomitant increases in Bax and caspase-3 expression, and reduced Bcl-2 expression, which was reversed by pre‑treatment with SA in a dose-dependent manner. Moreover, these effects were mediated through the JNK and p38 pathways, as pre‑treatment with SA inhibited the OGD/R-induced increase in phosphorylated (p-)JNK and p-p38 expression. Taken together, these results suggested that SA exerted strong neuroprotective effects in hippocampal neuronal cells, which may be attributed to the attenuation of OGD/R-induced cell injury through the JNK and p38 signaling pathways. SN - 1791-244X UR - https://www.unboundmedicine.com/medline/citation/27278454/Neuroprotective_effects_of_syringic_acid_against_OGD/R_induced_injury_in_cultured_hippocampal_neuronal_cells_ L2 - http://www.spandidos-publications.com/ijmm/38/2/567 DB - PRIME DP - Unbound Medicine ER -