Tags

Type your tag names separated by a space and hit enter

The Systemic Acquired Resistance Regulator OsNPR1 Attenuates Growth by Repressing Auxin Signaling through Promoting IAA-Amido Synthase Expression.
Plant Physiol 2016; 172(1):546-58PP

Abstract

Systemic acquired resistance is a long-lasting and broad-spectrum disease resistance to pathogens. Our previous study demonstrated that overexpression of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (OsNPR1), a master gene for systemic acquired resistance in rice (Oryza sativa), greatly enhanced resistance to bacterial blight caused by Xanthomonas oryzae pv oryzae However, the growth and development of the OsNPR1 overexpression (OsNPR1-OX) plants were restrained, and the mechanism remained elusive. In this study, we dissected the OsNPR1-induced growth inhibition. We found that the OsNPR1-OX lines displayed phenotypes mimicking auxin-defective mutants, with decreases in root system, seed number and weight, internode elongation, and tiller number. Whole-genome expression analysis revealed that genes related to the auxin metabolism and signaling pathway were differentially expressed between the OsNPR1-OX and wild-type plants. Consistently, the indole-3-acetic acid (IAA) content was decreased and the auxin distribution pattern was altered in OsNPR1-OX plants. Importantly, we found that some GH3 family members, in particular OsGH3.8 coding IAA-amido synthetase, were constitutively up-regulated in OsNPR1-OX plants. Decreased OsGH3.8 expression by RNA interference could partially restore IAA level and largely rescue the restrained growth and development phenotypes but did not affect the disease resistance of OsNPR1-OX plants. Taken together, we revealed that OsNPR1 affects rice growth and development by disrupting the auxin pathway at least partially through indirectly up-regulating OsGH3.8 expression.

Authors+Show Affiliations

National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (X.L., L.S., Q.L., Z.H.);Shandong Rice Research Institute/Hydrobiology Research Center, Shandong Academy of Agriculture Sciences, Jinan 250100, China (X.L.);State Key Laboratory for Crop Genetics and Germplasm Enhancement and Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China (D.-L.Y.); andCollege of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China (B.M.).National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (X.L., L.S., Q.L., Z.H.);Shandong Rice Research Institute/Hydrobiology Research Center, Shandong Academy of Agriculture Sciences, Jinan 250100, China (X.L.);State Key Laboratory for Crop Genetics and Germplasm Enhancement and Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China (D.-L.Y.); andCollege of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China (B.M.).National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (X.L., L.S., Q.L., Z.H.);Shandong Rice Research Institute/Hydrobiology Research Center, Shandong Academy of Agriculture Sciences, Jinan 250100, China (X.L.);State Key Laboratory for Crop Genetics and Germplasm Enhancement and Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China (D.-L.Y.); andCollege of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China (B.M.).National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (X.L., L.S., Q.L., Z.H.);Shandong Rice Research Institute/Hydrobiology Research Center, Shandong Academy of Agriculture Sciences, Jinan 250100, China (X.L.);State Key Laboratory for Crop Genetics and Germplasm Enhancement and Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China (D.-L.Y.); andCollege of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China (B.M.).National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (X.L., L.S., Q.L., Z.H.);Shandong Rice Research Institute/Hydrobiology Research Center, Shandong Academy of Agriculture Sciences, Jinan 250100, China (X.L.);State Key Laboratory for Crop Genetics and Germplasm Enhancement and Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China (D.-L.Y.); andCollege of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China (B.M.).National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (X.L., L.S., Q.L., Z.H.);Shandong Rice Research Institute/Hydrobiology Research Center, Shandong Academy of Agriculture Sciences, Jinan 250100, China (X.L.);State Key Laboratory for Crop Genetics and Germplasm Enhancement and Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China (D.-L.Y.); andCollege of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China (B.M.) zhhe@sibs.ac.cn.

Pub Type(s)

Journal Article
Research Support, Non-U.S. Gov't

Language

eng

PubMed ID

27378815

Citation

Li, Xiaozun, et al. "The Systemic Acquired Resistance Regulator OsNPR1 Attenuates Growth By Repressing Auxin Signaling Through Promoting IAA-Amido Synthase Expression." Plant Physiology, vol. 172, no. 1, 2016, pp. 546-58.
Li X, Yang DL, Sun L, et al. The Systemic Acquired Resistance Regulator OsNPR1 Attenuates Growth by Repressing Auxin Signaling through Promoting IAA-Amido Synthase Expression. Plant Physiol. 2016;172(1):546-58.
Li, X., Yang, D. L., Sun, L., Li, Q., Mao, B., & He, Z. (2016). The Systemic Acquired Resistance Regulator OsNPR1 Attenuates Growth by Repressing Auxin Signaling through Promoting IAA-Amido Synthase Expression. Plant Physiology, 172(1), pp. 546-58. doi:10.1104/pp.16.00129.
Li X, et al. The Systemic Acquired Resistance Regulator OsNPR1 Attenuates Growth By Repressing Auxin Signaling Through Promoting IAA-Amido Synthase Expression. Plant Physiol. 2016;172(1):546-58. PubMed PMID: 27378815.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - The Systemic Acquired Resistance Regulator OsNPR1 Attenuates Growth by Repressing Auxin Signaling through Promoting IAA-Amido Synthase Expression. AU - Li,Xiaozun, AU - Yang,Dong-Lei, AU - Sun,Li, AU - Li,Qun, AU - Mao,Bizeng, AU - He,Zuhua, Y1 - 2016/07/04/ PY - 2016/01/22/received PY - 2016/06/29/accepted PY - 2016/7/6/entrez PY - 2016/7/6/pubmed PY - 2017/9/28/medline SP - 546 EP - 58 JF - Plant physiology JO - Plant Physiol. VL - 172 IS - 1 N2 - Systemic acquired resistance is a long-lasting and broad-spectrum disease resistance to pathogens. Our previous study demonstrated that overexpression of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (OsNPR1), a master gene for systemic acquired resistance in rice (Oryza sativa), greatly enhanced resistance to bacterial blight caused by Xanthomonas oryzae pv oryzae However, the growth and development of the OsNPR1 overexpression (OsNPR1-OX) plants were restrained, and the mechanism remained elusive. In this study, we dissected the OsNPR1-induced growth inhibition. We found that the OsNPR1-OX lines displayed phenotypes mimicking auxin-defective mutants, with decreases in root system, seed number and weight, internode elongation, and tiller number. Whole-genome expression analysis revealed that genes related to the auxin metabolism and signaling pathway were differentially expressed between the OsNPR1-OX and wild-type plants. Consistently, the indole-3-acetic acid (IAA) content was decreased and the auxin distribution pattern was altered in OsNPR1-OX plants. Importantly, we found that some GH3 family members, in particular OsGH3.8 coding IAA-amido synthetase, were constitutively up-regulated in OsNPR1-OX plants. Decreased OsGH3.8 expression by RNA interference could partially restore IAA level and largely rescue the restrained growth and development phenotypes but did not affect the disease resistance of OsNPR1-OX plants. Taken together, we revealed that OsNPR1 affects rice growth and development by disrupting the auxin pathway at least partially through indirectly up-regulating OsGH3.8 expression. SN - 1532-2548 UR - https://www.unboundmedicine.com/medline/citation/27378815/The_Systemic_Acquired_Resistance_Regulator_OsNPR1_Attenuates_Growth_by_Repressing_Auxin_Signaling_through_Promoting_IAA_Amido_Synthase_Expression_ L2 - http://www.plantphysiol.org/cgi/pmidlookup?view=long&pmid=27378815 DB - PRIME DP - Unbound Medicine ER -