Tags

Type your tag names separated by a space and hit enter

Anti-aging effects of Piper cambodianum P. Fourn. extract on normal human dermal fibroblast cells and a wound-healing model in mice.
Clin Interv Aging. 2016; 11:1017-26.CI

Abstract

BACKGROUND

Aging of skin is associated with environmental factors such as ultraviolet rays, air pollution, gravity, and genetic factors, all of which can lead to wrinkling of skin. Previous reports suggest that the wound repair is impaired by the aging process and strategies to manipulate the age-related wound healing are necessary in order to stimulate repair.

OBJECTIVE

Several traditional plant extracts are well-known for their properties of skin protection and care. Piper cambodianum P. Fourn. (PPF), a member of Piperacecae, is a plant found in Vietnam that might have therapeutic properties. Therefore, the effects of PPF stem and leaf extract on aging process were investigated in vitro and in vivo.

METHODS

PPF extract dissolved in methanol was investigated using Western blotting, real-time quantitative reverse transcription-polymerase chain reaction, flow cytometry, and cell wound-healing assays. We assessed the anti-aging effect of PPF in mouse using the wound-healing assay. The results were analyzed by Student's unpaired t-test; *P<0.05 and **P<0.01 were considered to indicate significant and highly significant values, respectively, compared with corresponding controls.

RESULTS

PPF treatment demonstrated in vitro and in vivo anti-aging activity. Western blot analysis of PPF-treated normal human dermal fibroblast cells showed a dose-dependent increase in the expression of extracellular matrix genes such as collagen and elastin, but decreased expression of the aging gene matrix metalloproteinase-3. Quantitative polymerase chain reaction showed that PPF-treated cells displayed dose-dependent increase in messenger RNA expression levels of collagen, elastin, and hyaluronan synthase-2 and decreased expression levels of matrix metalloproteinase-1 aging gene. PPF treatment led to decreased production of reactive oxygen species in cells subjected to ultraviolet irradiation. Furthermore, PPF extract showed positive wound-healing effects in mice.

CONCLUSION

This study demonstrated the anti-aging and wound-healing effects of PPF extract. Therefore, PPF extract represents a promising new therapeutic agent for anti-aging and wound-healing treatments.

Authors+Show Affiliations

Department of Pharmacology and Medical Science, Metabolic Diseases and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon.Department of Pharmacology and Medical Science, Metabolic Diseases and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon.Department of Pharmacy, College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea.Department of Pharmacology and Medical Science, Metabolic Diseases and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon.Department of Pharmacology and Medical Science, Metabolic Diseases and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon.

Pub Type(s)

Journal Article

Language

eng

PubMed ID

27536082

Citation

Lee, Hyunji, et al. "Anti-aging Effects of Piper Cambodianum P. Fourn. Extract On Normal Human Dermal Fibroblast Cells and a Wound-healing Model in Mice." Clinical Interventions in Aging, vol. 11, 2016, pp. 1017-26.
Lee H, Hong Y, Kwon SH, et al. Anti-aging effects of Piper cambodianum P. Fourn. extract on normal human dermal fibroblast cells and a wound-healing model in mice. Clin Interv Aging. 2016;11:1017-26.
Lee, H., Hong, Y., Kwon, S. H., Park, J., & Park, J. (2016). Anti-aging effects of Piper cambodianum P. Fourn. extract on normal human dermal fibroblast cells and a wound-healing model in mice. Clinical Interventions in Aging, 11, 1017-26. https://doi.org/10.2147/CIA.S107734
Lee H, et al. Anti-aging Effects of Piper Cambodianum P. Fourn. Extract On Normal Human Dermal Fibroblast Cells and a Wound-healing Model in Mice. Clin Interv Aging. 2016;11:1017-26. PubMed PMID: 27536082.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Anti-aging effects of Piper cambodianum P. Fourn. extract on normal human dermal fibroblast cells and a wound-healing model in mice. AU - Lee,Hyunji, AU - Hong,Youngeun, AU - Kwon,So Hee, AU - Park,Jongsun, AU - Park,Jisoo, Y1 - 2016/07/29/ PY - 2016/8/19/entrez PY - 2016/8/19/pubmed PY - 2017/2/14/medline KW - PPF extract KW - ROS KW - anti-aging KW - antioxidant KW - normal human dermal fibroblasts KW - wound healing SP - 1017 EP - 26 JF - Clinical interventions in aging JO - Clin Interv Aging VL - 11 N2 - BACKGROUND: Aging of skin is associated with environmental factors such as ultraviolet rays, air pollution, gravity, and genetic factors, all of which can lead to wrinkling of skin. Previous reports suggest that the wound repair is impaired by the aging process and strategies to manipulate the age-related wound healing are necessary in order to stimulate repair. OBJECTIVE: Several traditional plant extracts are well-known for their properties of skin protection and care. Piper cambodianum P. Fourn. (PPF), a member of Piperacecae, is a plant found in Vietnam that might have therapeutic properties. Therefore, the effects of PPF stem and leaf extract on aging process were investigated in vitro and in vivo. METHODS: PPF extract dissolved in methanol was investigated using Western blotting, real-time quantitative reverse transcription-polymerase chain reaction, flow cytometry, and cell wound-healing assays. We assessed the anti-aging effect of PPF in mouse using the wound-healing assay. The results were analyzed by Student's unpaired t-test; *P<0.05 and **P<0.01 were considered to indicate significant and highly significant values, respectively, compared with corresponding controls. RESULTS: PPF treatment demonstrated in vitro and in vivo anti-aging activity. Western blot analysis of PPF-treated normal human dermal fibroblast cells showed a dose-dependent increase in the expression of extracellular matrix genes such as collagen and elastin, but decreased expression of the aging gene matrix metalloproteinase-3. Quantitative polymerase chain reaction showed that PPF-treated cells displayed dose-dependent increase in messenger RNA expression levels of collagen, elastin, and hyaluronan synthase-2 and decreased expression levels of matrix metalloproteinase-1 aging gene. PPF treatment led to decreased production of reactive oxygen species in cells subjected to ultraviolet irradiation. Furthermore, PPF extract showed positive wound-healing effects in mice. CONCLUSION: This study demonstrated the anti-aging and wound-healing effects of PPF extract. Therefore, PPF extract represents a promising new therapeutic agent for anti-aging and wound-healing treatments. SN - 1178-1998 UR - https://www.unboundmedicine.com/medline/citation/27536082/Anti_aging_effects_of_Piper_cambodianum_P__Fourn__extract_on_normal_human_dermal_fibroblast_cells_and_a_wound_healing_model_in_mice_ L2 - https://dx.doi.org/10.2147/CIA.S107734 DB - PRIME DP - Unbound Medicine ER -