Tags

Type your tag names separated by a space and hit enter

Different responses of Caco-2 and MCF-7 cells to silver nanoparticles are based on highly similar mechanisms of action.
Nanotoxicology. 2016 12; 10(10):1431-1441.N

Abstract

The mode of action of silver nanoparticles (AgNPs) is suggested to be exerted through both Ag+ and AgNP dependent mechanisms. Ingestion is one of the major NP exposure routes, and potential effects are often studied using Caco-2 cells, a well-established model for the gut epithelium. MCF-7 cells are epithelial breast cancer cells with extensive well-characterized toxicogenomics profiles. In the present study, we aimed to gain a deeper understanding of the cellular molecular responses in Caco-2 and MCF-7 cells after AgNP exposure in order to evaluate whether epithelial cells derived from different tissues demonstrated similar responses. These insights could possibly reduce the size of cell panels for NP hazard identification screening purposes. AgNPs of 20, 30, 60, and 110 nm, and AgNO3 were exposed for 6 h and 24 h. AgNPs were shown to be taken up and dissolve intracellularly. Compared with MCF-7 cells, Caco-2 cells showed a higher sensitivity to AgNPs, slower gene expression kinetics and absence of NP size-dependent responses. However, on a molecular level, no significant differences were observed between the two cell types. Transcriptomic analysis showed that Ag(NP) exposure caused (oxidative) stress responses, possibly leading to cell death in both cell lines. There was no indication for effects specifically induced by AgNPs. Responses to AgNPs appeared to be induced by silver ions released from the AgNPs. In conclusion, differences in mRNA responses to AgNPs between Caco-2 and MCF-7 cells were mainly related to timing and magnitude, but not to a different underlying mechanism.

Authors+Show Affiliations

a RIKILT - Wageningen University & Research Centre , Wageningen , The Netherlands and.a RIKILT - Wageningen University & Research Centre , Wageningen , The Netherlands and.a RIKILT - Wageningen University & Research Centre , Wageningen , The Netherlands and.b University College Dublin , Dublin , Ireland.a RIKILT - Wageningen University & Research Centre , Wageningen , The Netherlands and.b University College Dublin , Dublin , Ireland.a RIKILT - Wageningen University & Research Centre , Wageningen , The Netherlands and.a RIKILT - Wageningen University & Research Centre , Wageningen , The Netherlands and.a RIKILT - Wageningen University & Research Centre , Wageningen , The Netherlands and.a RIKILT - Wageningen University & Research Centre , Wageningen , The Netherlands and.a RIKILT - Wageningen University & Research Centre , Wageningen , The Netherlands and.

Pub Type(s)

Journal Article

Language

eng

PubMed ID

27597447

Citation

van der Zande, Meike, et al. "Different Responses of Caco-2 and MCF-7 Cells to Silver Nanoparticles Are Based On Highly Similar Mechanisms of Action." Nanotoxicology, vol. 10, no. 10, 2016, pp. 1431-1441.
van der Zande M, Undas AK, Kramer E, et al. Different responses of Caco-2 and MCF-7 cells to silver nanoparticles are based on highly similar mechanisms of action. Nanotoxicology. 2016;10(10):1431-1441.
van der Zande, M., Undas, A. K., Kramer, E., Monopoli, M. P., Peters, R. J., Garry, D., Antunes Fernandes, E. C., Hendriksen, P. J., Marvin, H. J., Peijnenburg, A. A., & Bouwmeester, H. (2016). Different responses of Caco-2 and MCF-7 cells to silver nanoparticles are based on highly similar mechanisms of action. Nanotoxicology, 10(10), 1431-1441.
van der Zande M, et al. Different Responses of Caco-2 and MCF-7 Cells to Silver Nanoparticles Are Based On Highly Similar Mechanisms of Action. Nanotoxicology. 2016;10(10):1431-1441. PubMed PMID: 27597447.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Different responses of Caco-2 and MCF-7 cells to silver nanoparticles are based on highly similar mechanisms of action. AU - van der Zande,Meike, AU - Undas,Anna K, AU - Kramer,Evelien, AU - Monopoli,Marco P, AU - Peters,Ruud J, AU - Garry,David, AU - Antunes Fernandes,Elsa C, AU - Hendriksen,Peter J, AU - Marvin,Hans J P, AU - Peijnenburg,Ad A, AU - Bouwmeester,Hans, Y1 - 2016/09/06/ PY - 2016/9/7/pubmed PY - 2017/6/24/medline PY - 2016/9/7/entrez KW - Caco-2 KW - MCF-7 KW - in vitro KW - silver nanoparticles KW - toxicogenomics SP - 1431 EP - 1441 JF - Nanotoxicology JO - Nanotoxicology VL - 10 IS - 10 N2 - The mode of action of silver nanoparticles (AgNPs) is suggested to be exerted through both Ag+ and AgNP dependent mechanisms. Ingestion is one of the major NP exposure routes, and potential effects are often studied using Caco-2 cells, a well-established model for the gut epithelium. MCF-7 cells are epithelial breast cancer cells with extensive well-characterized toxicogenomics profiles. In the present study, we aimed to gain a deeper understanding of the cellular molecular responses in Caco-2 and MCF-7 cells after AgNP exposure in order to evaluate whether epithelial cells derived from different tissues demonstrated similar responses. These insights could possibly reduce the size of cell panels for NP hazard identification screening purposes. AgNPs of 20, 30, 60, and 110 nm, and AgNO3 were exposed for 6 h and 24 h. AgNPs were shown to be taken up and dissolve intracellularly. Compared with MCF-7 cells, Caco-2 cells showed a higher sensitivity to AgNPs, slower gene expression kinetics and absence of NP size-dependent responses. However, on a molecular level, no significant differences were observed between the two cell types. Transcriptomic analysis showed that Ag(NP) exposure caused (oxidative) stress responses, possibly leading to cell death in both cell lines. There was no indication for effects specifically induced by AgNPs. Responses to AgNPs appeared to be induced by silver ions released from the AgNPs. In conclusion, differences in mRNA responses to AgNPs between Caco-2 and MCF-7 cells were mainly related to timing and magnitude, but not to a different underlying mechanism. SN - 1743-5404 UR - https://www.unboundmedicine.com/medline/citation/27597447/Different_responses_of_Caco_2_and_MCF_7_cells_to_silver_nanoparticles_are_based_on_highly_similar_mechanisms_of_action_ L2 - https://www.tandfonline.com/doi/full/10.1080/17435390.2016.1225132 DB - PRIME DP - Unbound Medicine ER -