Tags

Type your tag names separated by a space and hit enter

Oxidative stress responses and insights into the sensitivity of the earthworms Metaphire guillelmi and Eisenia fetida to soil cadmium.
Sci Total Environ. 2017 Jan 01; 574:300-306.ST

Abstract

Soil toxicological tests are commonly performed using Eisenia fetida as the standard earthworm species, but it is tolerant to a wide range of pollutants. Therefore, the inclusion of susceptible species is crucial for the accurate estimation of soil contamination. In this study, we examined the sensitivity to soil cadmium (Cd) of anecic Metaphire guillelmi and epigeic E. fetida by measuring multiple indexes of oxidative stress. Using subcellular partitioning analysis, we further elucidated the inherent mechanism underlying the species-specific sensitivity of the two earthworm species. Among the battery of biochemical indexes, reactive oxygen species and protein carbonyl groups served as sensitive biomarkers. According to their respective response thresholds, M. guillelmi was more sensitive than E. fetida and they differed in their dose-response relationships. In E. fetida, the activities of three antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST), exhibited a hormesis-like U-shaped dose-response relationship, while in M. guillelmi SOD, glutathione peroxidase (an analogue of CAT) and GST showed an inverted U-shaped relationship. The concentrations of Cd in the subcellular fractions and whole body of the earthworms well fit (R2>0.9) a saturation model versus bioavailable Cd concentrations determined by the diffusive gradients in thin films technique. Despite the lower accumulation capacity of M. guillelmi, the Cd-binding capacity (Cmax) of its subcellular heat-stable protein fraction, the so-called biologically detoxified metal pool, was 2.7 times lower than that of E. fetida, whereas the Cd binding affinity (logK) of its heat-denatured protein fraction, i.e. the metal-sensitive fraction, was 3.0 times higher, which accounted for the high susceptibility of M. guillelmi to soil Cd. Our results suggest that because of their sensitivity, as exemplified by M. guillelmi, native earthworm species should be taken into account in soil risk assessments to avoid underestimation of the toxicity of various pollutants.

Authors+Show Affiliations

State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China; School of Chemistry and Environmental Engineering, Jiangsu University of Technology, 1801 Zhongwu Avenue, Changzhou 213001, China.State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China. Electronic address: ji@nju.edu.cn.

Pub Type(s)

Journal Article

Language

eng

PubMed ID

27639467

Citation

Chen, Xian, et al. "Oxidative Stress Responses and Insights Into the Sensitivity of the Earthworms Metaphire Guillelmi and Eisenia Fetida to Soil Cadmium." The Science of the Total Environment, vol. 574, 2017, pp. 300-306.
Chen X, Wang X, Gu X, et al. Oxidative stress responses and insights into the sensitivity of the earthworms Metaphire guillelmi and Eisenia fetida to soil cadmium. Sci Total Environ. 2017;574:300-306.
Chen, X., Wang, X., Gu, X., Jiang, Y., & Ji, R. (2017). Oxidative stress responses and insights into the sensitivity of the earthworms Metaphire guillelmi and Eisenia fetida to soil cadmium. The Science of the Total Environment, 574, 300-306. https://doi.org/10.1016/j.scitotenv.2016.09.059
Chen X, et al. Oxidative Stress Responses and Insights Into the Sensitivity of the Earthworms Metaphire Guillelmi and Eisenia Fetida to Soil Cadmium. Sci Total Environ. 2017 Jan 1;574:300-306. PubMed PMID: 27639467.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Oxidative stress responses and insights into the sensitivity of the earthworms Metaphire guillelmi and Eisenia fetida to soil cadmium. AU - Chen,Xian, AU - Wang,Xiaorong, AU - Gu,Xueyuan, AU - Jiang,Yang, AU - Ji,Rong, Y1 - 2016/10/14/ PY - 2016/07/23/received PY - 2016/09/06/revised PY - 2016/09/08/accepted PY - 2016/9/19/pubmed PY - 2018/6/5/medline PY - 2016/9/19/entrez KW - Cadmium KW - Earthworms KW - Oxidative stress biomarkers KW - Species-specific sensitivity KW - Subcellular distribution SP - 300 EP - 306 JF - The Science of the total environment JO - Sci Total Environ VL - 574 N2 - Soil toxicological tests are commonly performed using Eisenia fetida as the standard earthworm species, but it is tolerant to a wide range of pollutants. Therefore, the inclusion of susceptible species is crucial for the accurate estimation of soil contamination. In this study, we examined the sensitivity to soil cadmium (Cd) of anecic Metaphire guillelmi and epigeic E. fetida by measuring multiple indexes of oxidative stress. Using subcellular partitioning analysis, we further elucidated the inherent mechanism underlying the species-specific sensitivity of the two earthworm species. Among the battery of biochemical indexes, reactive oxygen species and protein carbonyl groups served as sensitive biomarkers. According to their respective response thresholds, M. guillelmi was more sensitive than E. fetida and they differed in their dose-response relationships. In E. fetida, the activities of three antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST), exhibited a hormesis-like U-shaped dose-response relationship, while in M. guillelmi SOD, glutathione peroxidase (an analogue of CAT) and GST showed an inverted U-shaped relationship. The concentrations of Cd in the subcellular fractions and whole body of the earthworms well fit (R2>0.9) a saturation model versus bioavailable Cd concentrations determined by the diffusive gradients in thin films technique. Despite the lower accumulation capacity of M. guillelmi, the Cd-binding capacity (Cmax) of its subcellular heat-stable protein fraction, the so-called biologically detoxified metal pool, was 2.7 times lower than that of E. fetida, whereas the Cd binding affinity (logK) of its heat-denatured protein fraction, i.e. the metal-sensitive fraction, was 3.0 times higher, which accounted for the high susceptibility of M. guillelmi to soil Cd. Our results suggest that because of their sensitivity, as exemplified by M. guillelmi, native earthworm species should be taken into account in soil risk assessments to avoid underestimation of the toxicity of various pollutants. SN - 1879-1026 UR - https://www.unboundmedicine.com/medline/citation/27639467/Oxidative_stress_responses_and_insights_into_the_sensitivity_of_the_earthworms_Metaphire_guillelmi_and_Eisenia_fetida_to_soil_cadmium_ L2 - https://linkinghub.elsevier.com/retrieve/pii/S0048-9697(16)31978-7 DB - PRIME DP - Unbound Medicine ER -