Tags

Type your tag names separated by a space and hit enter

Phosphorus flows in a peri-urban region with intensive food production: A case study.
J Environ Manage. 2017 Feb 01; 187:286-297.JE

Abstract

Excess phosphorus (P) in peri-urban regions is an emerging issue, whereas there is global depletion of quality mined supplies of P. The flow of P across the landscape leading to regional surpluses and deficits is not well understood. We computed a regional P budget with internal P flows in a fairly discreet peri-urban region (Lower Fraser Valley, BC) with closely juxtaposed agricultural and non-agricultural urban ecosystems, in order to clarify the relationship between food production, food consumption and other activities involving use of P (e.g. keeping pets and horses and using soaps). We hypothesized changes that might notably improve P efficiency in peri-urban settings and wider regions. Livestock feed for the dairy and poultry sectors was the largest influx of P: the peri-urban land is too limited to grow feed grains and they are imported from outside the region. Fertilizer and import of food were the next largest influxes of P and a similar amount of P flows as food from the agricultural to urban ecosystems. Export of horticultural crops (berries and greenhouse crops) and poultry represented agricultural effluxes that partially offset the influxes. P efficiency was lower for horticultural production (21%) than animal production (32%), the latter benefited from importing feed crops, suggesting a regional advantage for animal products. There was 2.0, 3.8, 5.7 and 5.6 tonnes imported P per $ million farm cash receipts for horticulture, dairy, poultry meat and eggs. Eliminating fertilizer for corn and grass would reduce the ratio for the dairy industry. The net influx, dominated by fertilizer, animal feed and food was 8470 tonnes P per year or 3.2 kg P per person per year, and of this the addition to agricultural soils was 3650 tonnes P. The efflux in sewage effluent to the sea was 1150 tonnes P and exported sewage solids was 450 tonnes P. Municipal solid waste disposal was most difficult to quantify and was about 1800 tonnes P, 80% of which was partly reused in the urban regions and partly sequestered in landfill, which may be considered an efflux or a surplus. Reuse of rendering waste for feeding poultry significantly reduced P importation, but no rendering waste is used for cattle due to health concerns. Sensitivity analysis showed that variation in human population and the amount of P consumed per person in chicken and dairy products had the most influence on the total movement of P from agricultural to urban-ecosystems. There are current farm practices that mitigate P surpluses and new technologies are being developed to further reduce farm imbalances. However, current waste management policies that promote practices such composting of home wastes and exporting of poultry manure and biosolids to semiarid rangeland do little to enhance overall P cycling because the P is not returned to the farms producing feed and food for the peri-urban region. Sequestering in landfills may be a better solution until better ways are found to return surplus P.

Authors+Show Affiliations

Agriculture and Agri-Food Canada, Agassiz, British Columbia V0M 1A0, Canada. Electronic address: Shabtai.Bittman@AGR.GC.CA.ECOMatters Inc., Pinawa, Manitoba R0E 1L0, Canada. Electronic address: sheppards@ecomatters.com.BC Ministry of Agriculture, Abbotsford, British Columbia V3G 2M3, Canada. Electronic address: David.Poon@gov.bc.ca.Agriculture and Agri-Food Canada, Agassiz, British Columbia V0M 1A0, Canada. Electronic address: Derek.Hunt@AGR.GC.CA.

Pub Type(s)

Journal Article

Language

eng

PubMed ID

27914350

Citation

Bittman, S, et al. "Phosphorus Flows in a Peri-urban Region With Intensive Food Production: a Case Study." Journal of Environmental Management, vol. 187, 2017, pp. 286-297.
Bittman S, Sheppard SC, Poon D, et al. Phosphorus flows in a peri-urban region with intensive food production: A case study. J Environ Manage. 2017;187:286-297.
Bittman, S., Sheppard, S. C., Poon, D., & Hunt, D. E. (2017). Phosphorus flows in a peri-urban region with intensive food production: A case study. Journal of Environmental Management, 187, 286-297. https://doi.org/10.1016/j.jenvman.2016.11.040
Bittman S, et al. Phosphorus Flows in a Peri-urban Region With Intensive Food Production: a Case Study. J Environ Manage. 2017 Feb 1;187:286-297. PubMed PMID: 27914350.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Phosphorus flows in a peri-urban region with intensive food production: A case study. AU - Bittman,S, AU - Sheppard,S C, AU - Poon,D, AU - Hunt,D E, Y1 - 2016/12/01/ PY - 2016/03/28/received PY - 2016/11/15/revised PY - 2016/11/18/accepted PY - 2016/12/4/pubmed PY - 2017/4/25/medline PY - 2016/12/4/entrez KW - Food KW - Livestock KW - Nutrient recycling KW - Regional SP - 286 EP - 297 JF - Journal of environmental management JO - J Environ Manage VL - 187 N2 - Excess phosphorus (P) in peri-urban regions is an emerging issue, whereas there is global depletion of quality mined supplies of P. The flow of P across the landscape leading to regional surpluses and deficits is not well understood. We computed a regional P budget with internal P flows in a fairly discreet peri-urban region (Lower Fraser Valley, BC) with closely juxtaposed agricultural and non-agricultural urban ecosystems, in order to clarify the relationship between food production, food consumption and other activities involving use of P (e.g. keeping pets and horses and using soaps). We hypothesized changes that might notably improve P efficiency in peri-urban settings and wider regions. Livestock feed for the dairy and poultry sectors was the largest influx of P: the peri-urban land is too limited to grow feed grains and they are imported from outside the region. Fertilizer and import of food were the next largest influxes of P and a similar amount of P flows as food from the agricultural to urban ecosystems. Export of horticultural crops (berries and greenhouse crops) and poultry represented agricultural effluxes that partially offset the influxes. P efficiency was lower for horticultural production (21%) than animal production (32%), the latter benefited from importing feed crops, suggesting a regional advantage for animal products. There was 2.0, 3.8, 5.7 and 5.6 tonnes imported P per $ million farm cash receipts for horticulture, dairy, poultry meat and eggs. Eliminating fertilizer for corn and grass would reduce the ratio for the dairy industry. The net influx, dominated by fertilizer, animal feed and food was 8470 tonnes P per year or 3.2 kg P per person per year, and of this the addition to agricultural soils was 3650 tonnes P. The efflux in sewage effluent to the sea was 1150 tonnes P and exported sewage solids was 450 tonnes P. Municipal solid waste disposal was most difficult to quantify and was about 1800 tonnes P, 80% of which was partly reused in the urban regions and partly sequestered in landfill, which may be considered an efflux or a surplus. Reuse of rendering waste for feeding poultry significantly reduced P importation, but no rendering waste is used for cattle due to health concerns. Sensitivity analysis showed that variation in human population and the amount of P consumed per person in chicken and dairy products had the most influence on the total movement of P from agricultural to urban-ecosystems. There are current farm practices that mitigate P surpluses and new technologies are being developed to further reduce farm imbalances. However, current waste management policies that promote practices such composting of home wastes and exporting of poultry manure and biosolids to semiarid rangeland do little to enhance overall P cycling because the P is not returned to the farms producing feed and food for the peri-urban region. Sequestering in landfills may be a better solution until better ways are found to return surplus P. SN - 1095-8630 UR - https://www.unboundmedicine.com/medline/citation/27914350/Phosphorus_flows_in_a_peri_urban_region_with_intensive_food_production:_A_case_study_ DB - PRIME DP - Unbound Medicine ER -