Tags

Type your tag names separated by a space and hit enter

Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis.
Redox Biol. 2017 04; 11:254-262.RB

Abstract

Artesunate, an anti-malarial drug, has been repurposed as an anticancer drug due to its induction of cell death via reactive oxygen species (ROS) production. However, the molecular mechanisms regulating cancer cell death and the resistance of cells to artesunate remain unclear. We investigated the molecular mechanisms behind the antitumor effects of artesunate and an approach to overcome artesunate resistance in head and neck cancer (HNC). The effects of artesunate and trigonelline were tested in different HNC cell lines, including three cisplatin-resistant HNC cell lines. The effects of these drugs as well as the inhibition of Keap1, Nrf2, and HO-1 were assessed by cell viability, cell death, glutathione (GSH) and ROS production, protein expression, and mouse tumor xenograft models. Artesunate selectively killed HNC cells but not normal cells. The artesunate sensitivity was relatively low in cisplatin-resistant HNC cells. Artesunate induced ferroptosis in HNC cells by decreasing cellular GSH levels and increasing lipid ROS levels. This effect was blocked by co-incubation with ferrostatin-1 and a trolox pretreatment. Artesunate activated the Nrf2-antioxidant response element (ARE) pathway in HNC cells, which contributed to ferroptosis resistance. The silencing of Keap1, a negative regulator of Nrf2, decreased artesunate sensitivity in HNC cells. Nrf2 genetic silencing or trigonelline reversed the ferroptosis resistance of Keap1-silenced and cisplatin-resistant HNC cells to artesunate in vitro and in vivo. Nrf2-ARE pathway activation contributes to the artesunate resistance of HNC cells, and inhibition of this pathway abolishes ferroptosis-resistant HNC.

CONDENSED ABSTRACT

Our results show the effectiveness and molecular mechanism of artesunate treatment on head and neck cancer (HNC). Artesunate selectively killed HNC cells but not normal cells by inducing an iron-dependent, ROS-accumulated ferroptosis. However, this effect may be suboptimal in some cisplatin-resistant HNCs because of Nrf2-antioxidant response element (ARE) pathway activation. Inhibition of the Nrf2-ARE pathway increased artesunate sensitivity and reversed the ferroptosis resistance in resistant HNC cells.

Authors+Show Affiliations

Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea. Electronic address: rohjl@amc.seoul.kr.Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.

Pub Type(s)

Journal Article

Language

eng

PubMed ID

28012440

Citation

Roh, Jong-Lyel, et al. "Nrf2 Inhibition Reverses the Resistance of Cisplatin-resistant Head and Neck Cancer Cells to Artesunate-induced Ferroptosis." Redox Biology, vol. 11, 2017, pp. 254-262.
Roh JL, Kim EH, Jang H, et al. Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis. Redox Biol. 2017;11:254-262.
Roh, J. L., Kim, E. H., Jang, H., & Shin, D. (2017). Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis. Redox Biology, 11, 254-262. https://doi.org/10.1016/j.redox.2016.12.010
Roh JL, et al. Nrf2 Inhibition Reverses the Resistance of Cisplatin-resistant Head and Neck Cancer Cells to Artesunate-induced Ferroptosis. Redox Biol. 2017;11:254-262. PubMed PMID: 28012440.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis. AU - Roh,Jong-Lyel, AU - Kim,Eun Hye, AU - Jang,Hyejin, AU - Shin,Daiha, Y1 - 2016/12/18/ PY - 2016/11/29/received PY - 2016/12/14/accepted PY - 2016/12/25/pubmed PY - 2017/11/29/medline PY - 2016/12/25/entrez KW - Artensunate KW - Ferroptosis KW - Head and neck cancer KW - Nrf2 KW - Reactive oxygen species KW - Resistance SP - 254 EP - 262 JF - Redox biology JO - Redox Biol VL - 11 N2 - : Artesunate, an anti-malarial drug, has been repurposed as an anticancer drug due to its induction of cell death via reactive oxygen species (ROS) production. However, the molecular mechanisms regulating cancer cell death and the resistance of cells to artesunate remain unclear. We investigated the molecular mechanisms behind the antitumor effects of artesunate and an approach to overcome artesunate resistance in head and neck cancer (HNC). The effects of artesunate and trigonelline were tested in different HNC cell lines, including three cisplatin-resistant HNC cell lines. The effects of these drugs as well as the inhibition of Keap1, Nrf2, and HO-1 were assessed by cell viability, cell death, glutathione (GSH) and ROS production, protein expression, and mouse tumor xenograft models. Artesunate selectively killed HNC cells but not normal cells. The artesunate sensitivity was relatively low in cisplatin-resistant HNC cells. Artesunate induced ferroptosis in HNC cells by decreasing cellular GSH levels and increasing lipid ROS levels. This effect was blocked by co-incubation with ferrostatin-1 and a trolox pretreatment. Artesunate activated the Nrf2-antioxidant response element (ARE) pathway in HNC cells, which contributed to ferroptosis resistance. The silencing of Keap1, a negative regulator of Nrf2, decreased artesunate sensitivity in HNC cells. Nrf2 genetic silencing or trigonelline reversed the ferroptosis resistance of Keap1-silenced and cisplatin-resistant HNC cells to artesunate in vitro and in vivo. Nrf2-ARE pathway activation contributes to the artesunate resistance of HNC cells, and inhibition of this pathway abolishes ferroptosis-resistant HNC. CONDENSED ABSTRACT: Our results show the effectiveness and molecular mechanism of artesunate treatment on head and neck cancer (HNC). Artesunate selectively killed HNC cells but not normal cells by inducing an iron-dependent, ROS-accumulated ferroptosis. However, this effect may be suboptimal in some cisplatin-resistant HNCs because of Nrf2-antioxidant response element (ARE) pathway activation. Inhibition of the Nrf2-ARE pathway increased artesunate sensitivity and reversed the ferroptosis resistance in resistant HNC cells. SN - 2213-2317 UR - https://www.unboundmedicine.com/medline/citation/28012440/Nrf2_inhibition_reverses_the_resistance_of_cisplatin_resistant_head_and_neck_cancer_cells_to_artesunate_induced_ferroptosis_ L2 - https://linkinghub.elsevier.com/retrieve/pii/S2213-2317(16)30373-1 DB - PRIME DP - Unbound Medicine ER -