Tags

Type your tag names separated by a space and hit enter

Metal-based superoxide dismutase and catalase mimics reduce oxidative stress biomarkers and extend life span of Saccharomyces cerevisiae.
Biochem J. 2017 01 15; 474(2):301-315.BJ

Abstract

Aging is a natural process characterized by several biological changes. In this context, oxidative stress appears as a key factor that leads cells and organisms to severe dysfunctions and diseases. To cope with reactive oxygen species and oxidative-related damage, there has been increased use of superoxide dismutase (SOD)/catalase (CAT) biomimetic compounds. Recently, we have shown that three metal-based compounds {[Fe(HPClNOL)Cl2]NO3, [Cu(HPClNOL)(CH3CN)](ClO4)2 and Mn(HPClNOL)(Cl)2}, harboring in vitro SOD and/or CAT activities, were critical for protection of yeast cells against oxidative stress. In this work, treating Saccharomyces cerevisiae with these SOD/CAT mimics (25.0 µM/1 h), we highlight the pivotal role of these compounds to extend the life span of yeast during chronological aging. Evaluating lipid and protein oxidation of aged cells, it becomes evident that these mimics extend the life expectancy of yeast mainly due to the reduction in oxidative stress biomarkers. In addition, the treatment of yeast cells with these mimics regulated the amounts of lipid droplet occurrence, consistent with the requirement and protection of lipids for cell integrity during aging. Concerning SOD/CAT mimics uptake, using inductively coupled plasma mass spectrometry, we add new evidence that these complexes, besides being bioabsorbed by S. cerevisiae cells, can also affect metal homeostasis. Finally, our work presents a new application for these SOD/CAT mimics, which demonstrate a great potential to be employed as antiaging agents. Taken together, these promising results prompt future studies concerning the relevance of administration of these molecules against the emerging aging-related diseases such as Parkinson's, Alzheimer's and Huntington's.

Authors+Show Affiliations

Laboratório de Citotoxicidade e Genotoxicidade, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.Centro de Desenvolvimento Tecnológico em Saúde, CDTS Fiocruz, Rio de Janeiro, RJ, Brazil.Laboratório de Citotoxicidade e Genotoxicidade, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.Laboratório de Espectrometria Atômica (LABSPECTRO), Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.Laboratório de Síntese Orgânica e Química de Coordenação Aplicada a Sistemas Biológicos (LABSO-BIO), Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.Laboratório de Ciências Químicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ 28013-602, Brazil.Laboratório de Ciências Químicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ 28013-602, Brazil.Laboratório de Citotoxicidade e Genotoxicidade, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil marcosdp@iq.ufrj.br.

Pub Type(s)

Journal Article

Language

eng

PubMed ID

28062841

Citation

Ribeiro, Thales de P., et al. "Metal-based Superoxide Dismutase and Catalase Mimics Reduce Oxidative Stress Biomarkers and Extend Life Span of Saccharomyces Cerevisiae." The Biochemical Journal, vol. 474, no. 2, 2017, pp. 301-315.
Ribeiro TP, Fonseca FL, de Carvalho MD, et al. Metal-based superoxide dismutase and catalase mimics reduce oxidative stress biomarkers and extend life span of Saccharomyces cerevisiae. Biochem J. 2017;474(2):301-315.
Ribeiro, T. P., Fonseca, F. L., de Carvalho, M. D., Godinho, R. M., de Almeida, F. P., Saint'Pierre, T. D., Rey, N. A., Fernandes, C., Horn, A., & Pereira, M. D. (2017). Metal-based superoxide dismutase and catalase mimics reduce oxidative stress biomarkers and extend life span of Saccharomyces cerevisiae. The Biochemical Journal, 474(2), 301-315. https://doi.org/10.1042/BCJ20160480
Ribeiro TP, et al. Metal-based Superoxide Dismutase and Catalase Mimics Reduce Oxidative Stress Biomarkers and Extend Life Span of Saccharomyces Cerevisiae. Biochem J. 2017 01 15;474(2):301-315. PubMed PMID: 28062841.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Metal-based superoxide dismutase and catalase mimics reduce oxidative stress biomarkers and extend life span of Saccharomyces cerevisiae. AU - Ribeiro,Thales de P, AU - Fonseca,Fernanda L, AU - de Carvalho,Mariana D C, AU - Godinho,Rodrigo M da C, AU - de Almeida,Fernando Pereira, AU - Saint'Pierre,Tatiana D, AU - Rey,Nicolás A, AU - Fernandes,Christiane, AU - Horn,Adolfo,Jr AU - Pereira,Marcos D, Y1 - 2016/11/15/ PY - 2016/05/24/received PY - 2016/11/10/revised PY - 2016/11/14/accepted PY - 2017/1/8/entrez PY - 2017/1/8/pubmed PY - 2017/6/16/medline KW - SOD and CAT mimics KW - Saccharomyces cerevisiae KW - chronological aging KW - lipid droplets KW - metal homeostasis SP - 301 EP - 315 JF - The Biochemical journal JO - Biochem J VL - 474 IS - 2 N2 - Aging is a natural process characterized by several biological changes. In this context, oxidative stress appears as a key factor that leads cells and organisms to severe dysfunctions and diseases. To cope with reactive oxygen species and oxidative-related damage, there has been increased use of superoxide dismutase (SOD)/catalase (CAT) biomimetic compounds. Recently, we have shown that three metal-based compounds {[Fe(HPClNOL)Cl2]NO3, [Cu(HPClNOL)(CH3CN)](ClO4)2 and Mn(HPClNOL)(Cl)2}, harboring in vitro SOD and/or CAT activities, were critical for protection of yeast cells against oxidative stress. In this work, treating Saccharomyces cerevisiae with these SOD/CAT mimics (25.0 µM/1 h), we highlight the pivotal role of these compounds to extend the life span of yeast during chronological aging. Evaluating lipid and protein oxidation of aged cells, it becomes evident that these mimics extend the life expectancy of yeast mainly due to the reduction in oxidative stress biomarkers. In addition, the treatment of yeast cells with these mimics regulated the amounts of lipid droplet occurrence, consistent with the requirement and protection of lipids for cell integrity during aging. Concerning SOD/CAT mimics uptake, using inductively coupled plasma mass spectrometry, we add new evidence that these complexes, besides being bioabsorbed by S. cerevisiae cells, can also affect metal homeostasis. Finally, our work presents a new application for these SOD/CAT mimics, which demonstrate a great potential to be employed as antiaging agents. Taken together, these promising results prompt future studies concerning the relevance of administration of these molecules against the emerging aging-related diseases such as Parkinson's, Alzheimer's and Huntington's. SN - 1470-8728 UR - https://www.unboundmedicine.com/medline/citation/28062841/Metal_based_superoxide_dismutase_and_catalase_mimics_reduce_oxidative_stress_biomarkers_and_extend_life_span_of_Saccharomyces_cerevisiae_ L2 - https://portlandpress.com/biochemj/article-lookup/doi/10.1042/BCJ20160480 DB - PRIME DP - Unbound Medicine ER -