Tags

Type your tag names separated by a space and hit enter

Skin as the site of vitamin D synthesis and target tissue for 1,25-dihydroxyvitamin D3. Use of calcitriol (1,25-dihydroxyvitamin D3) for treatment of psoriasis.
Arch Dermatol. 1987 Dec; 123(12):1677-1683a.AD

Abstract

Vitamin D is a hormone, not a vitamin. The skin is responsible for producing vitamin D. During exposure to sunlight, ultraviolet radiation penetrates into the epidermis and photolyzes provitamin D3 to previtamin D3. Previtamin D3 can either isomerize to vitamin D3 or be photolyzed to lymisterol and tachysterol. Vitamin D is also sensitive to sunlight and is photolyzed to 5,6-transvitamin D3, suprasterol I, and suprasterol II. In Boston, solar irradiation only produces previtamin D3 in the skin between the months of March and October. Aging, sunscreens, and melanin all diminish the capacity of the skin to produce previtamin D3. Once formed, vitamin D3 enters the circulation and is sequentially metabolized to 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 (1,25-[OH]2-D3). The epidermis possesses receptors for 1,25-(OH)2-D3. 1,25-(OH)2-D3 inhibits the proliferation of cultured keratinocytes and induces them to terminally differentiate. The topical or oral administration of 1,25-(OH)2-D3 has proved to be effective for the treatment of psoriasis. Therefore, the skin is the site for the synthesis of vitamin D and a target tissue for its active metabolite. The successful use of 1,25-(OH)2-D3 for the treatment of psoriasis heralds a new approach for the treatment of this enigmatic disorder.

Authors+Show Affiliations

US Department of Agriculture/Human Nutrition Research Center, Tufts University, Boston, MA.No affiliation info availableNo affiliation info available

Pub Type(s)

Journal Article
Review

Language

eng

PubMed ID

2825606

Citation

Holick, M F., et al. "Skin as the Site of Vitamin D Synthesis and Target Tissue for 1,25-dihydroxyvitamin D3. Use of Calcitriol (1,25-dihydroxyvitamin D3) for Treatment of Psoriasis." Archives of Dermatology, vol. 123, no. 12, 1987, 1677-1683a.
Holick MF, Smith E, Pincus S. Skin as the site of vitamin D synthesis and target tissue for 1,25-dihydroxyvitamin D3. Use of calcitriol (1,25-dihydroxyvitamin D3) for treatment of psoriasis. Arch Dermatol. 1987;123(12):1677-1683a.
Holick, M. F., Smith, E., & Pincus, S. (1987). Skin as the site of vitamin D synthesis and target tissue for 1,25-dihydroxyvitamin D3. Use of calcitriol (1,25-dihydroxyvitamin D3) for treatment of psoriasis. Archives of Dermatology, 123(12), 1677-1683a.
Holick MF, Smith E, Pincus S. Skin as the Site of Vitamin D Synthesis and Target Tissue for 1,25-dihydroxyvitamin D3. Use of Calcitriol (1,25-dihydroxyvitamin D3) for Treatment of Psoriasis. Arch Dermatol. 1987;123(12):1677-1683a. PubMed PMID: 2825606.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Skin as the site of vitamin D synthesis and target tissue for 1,25-dihydroxyvitamin D3. Use of calcitriol (1,25-dihydroxyvitamin D3) for treatment of psoriasis. AU - Holick,M F, AU - Smith,E, AU - Pincus,S, PY - 1987/12/1/pubmed PY - 1987/12/1/medline PY - 1987/12/1/entrez SP - 1677 EP - 1683a JF - Archives of dermatology JO - Arch Dermatol VL - 123 IS - 12 N2 - Vitamin D is a hormone, not a vitamin. The skin is responsible for producing vitamin D. During exposure to sunlight, ultraviolet radiation penetrates into the epidermis and photolyzes provitamin D3 to previtamin D3. Previtamin D3 can either isomerize to vitamin D3 or be photolyzed to lymisterol and tachysterol. Vitamin D is also sensitive to sunlight and is photolyzed to 5,6-transvitamin D3, suprasterol I, and suprasterol II. In Boston, solar irradiation only produces previtamin D3 in the skin between the months of March and October. Aging, sunscreens, and melanin all diminish the capacity of the skin to produce previtamin D3. Once formed, vitamin D3 enters the circulation and is sequentially metabolized to 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 (1,25-[OH]2-D3). The epidermis possesses receptors for 1,25-(OH)2-D3. 1,25-(OH)2-D3 inhibits the proliferation of cultured keratinocytes and induces them to terminally differentiate. The topical or oral administration of 1,25-(OH)2-D3 has proved to be effective for the treatment of psoriasis. Therefore, the skin is the site for the synthesis of vitamin D and a target tissue for its active metabolite. The successful use of 1,25-(OH)2-D3 for the treatment of psoriasis heralds a new approach for the treatment of this enigmatic disorder. SN - 0003-987X UR - https://www.unboundmedicine.com/medline/citation/2825606/Skin_as_the_site_of_vitamin_D_synthesis_and_target_tissue_for_125_dihydroxyvitamin_D3__Use_of_calcitriol__125_dihydroxyvitamin_D3__for_treatment_of_psoriasis_ L2 - https://jamanetwork.com/journals/jamadermatology/fullarticle/vol/123/pg/1677 DB - PRIME DP - Unbound Medicine ER -