Tags

Type your tag names separated by a space and hit enter

Video Analysis Verification of Head Impact Events Measured by Wearable Sensors.
Am J Sports Med 2017; 45(10):2379-2387AJ

Abstract

BACKGROUND

Wearable sensors are increasingly used to quantify the frequency and magnitude of head impact events in multiple sports. There is a paucity of evidence that verifies head impact events recorded by wearable sensors.

PURPOSE

To utilize video analysis to verify head impact events recorded by wearable sensors and describe the respective frequency and magnitude.

STUDY DESIGN

Cohort study (diagnosis); Level of evidence, 2.

METHODS

Thirty male (mean age, 16.6 ± 1.2 years; mean height, 1.77 ± 0.06 m; mean weight, 73.4 ± 12.2 kg) and 35 female (mean age, 16.2 ± 1.3 years; mean height, 1.66 ± 0.05 m; mean weight, 61.2 ± 6.4 kg) players volunteered to participate in this study during the 2014 and 2015 lacrosse seasons. Participants were instrumented with GForceTracker (GFT; boys) and X-Patch sensors (girls). Simultaneous game video was recorded by a trained videographer using a single camera located at the highest midfield location. One-third of the field was framed and panned to follow the ball during games. Videographic and accelerometer data were time synchronized. Head impact counts were compared with video recordings and were deemed valid if (1) the linear acceleration was ≥20 g, (2) the player was identified on the field, (3) the player was in camera view, and (4) the head impact mechanism could be clearly identified. Descriptive statistics of peak linear acceleration (PLA) and peak rotational velocity (PRV) for all verified head impacts ≥20 g were calculated.

RESULTS

For the boys, a total recorded 1063 impacts (2014: n = 545; 2015: n = 518) were logged by the GFT between game start and end times (mean PLA, 46 ± 31 g; mean PRV, 1093 ± 661 deg/s) during 368 player-games. Of these impacts, 690 were verified via video analysis (65%; mean PLA, 48 ± 34 g; mean PRV, 1242 ± 617 deg/s). The X-Patch sensors, worn by the girls, recorded a total 180 impacts during the course of the games, and 58 (2014: n = 33; 2015: n = 25) were verified via video analysis (32%; mean PLA, 39 ± 21 g; mean PRV, 1664 ± 619 rad/s).

CONCLUSION

The current data indicate that existing wearable sensor technologies may substantially overestimate head impact events. Further, while the wearable sensors always estimated a head impact location, only 48% of the impacts were a result of direct contact to the head as characterized on video. Using wearable sensors and video to verify head impacts may decrease the inclusion of false-positive impacts during game activity in the analysis.

Authors+Show Affiliations

Sports Medicine Assessment, Research & Testing (SMART) Laboratory, George Mason University, Manassas, Virginia, USA.MedStar Health Research Institute, Baltimore, Maryland, USA.Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.MedStar Health Research Institute, Baltimore, Maryland, USA.University of Virginia, Charlottesville, Virginia, USA.Princeton University, Princeton, New Jersey, USA.Sports Medicine Assessment, Research & Testing (SMART) Laboratory, George Mason University, Manassas, Virginia, USA.

Pub Type(s)

Journal Article

Language

eng

PubMed ID

28541813

Citation

Cortes, Nelson, et al. "Video Analysis Verification of Head Impact Events Measured By Wearable Sensors." The American Journal of Sports Medicine, vol. 45, no. 10, 2017, pp. 2379-2387.
Cortes N, Lincoln AE, Myer GD, et al. Video Analysis Verification of Head Impact Events Measured by Wearable Sensors. Am J Sports Med. 2017;45(10):2379-2387.
Cortes, N., Lincoln, A. E., Myer, G. D., Hepburn, L., Higgins, M., Putukian, M., & Caswell, S. V. (2017). Video Analysis Verification of Head Impact Events Measured by Wearable Sensors. The American Journal of Sports Medicine, 45(10), pp. 2379-2387. doi:10.1177/0363546517706703.
Cortes N, et al. Video Analysis Verification of Head Impact Events Measured By Wearable Sensors. Am J Sports Med. 2017;45(10):2379-2387. PubMed PMID: 28541813.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Video Analysis Verification of Head Impact Events Measured by Wearable Sensors. AU - Cortes,Nelson, AU - Lincoln,Andrew E, AU - Myer,Gregory D, AU - Hepburn,Lisa, AU - Higgins,Michael, AU - Putukian,Margot, AU - Caswell,Shane V, Y1 - 2017/05/25/ PY - 2017/5/26/pubmed PY - 2018/3/13/medline PY - 2017/5/26/entrez KW - accelerometer KW - head injury/concussion KW - methodology KW - wearable sensor SP - 2379 EP - 2387 JF - The American journal of sports medicine JO - Am J Sports Med VL - 45 IS - 10 N2 - BACKGROUND: Wearable sensors are increasingly used to quantify the frequency and magnitude of head impact events in multiple sports. There is a paucity of evidence that verifies head impact events recorded by wearable sensors. PURPOSE: To utilize video analysis to verify head impact events recorded by wearable sensors and describe the respective frequency and magnitude. STUDY DESIGN: Cohort study (diagnosis); Level of evidence, 2. METHODS: Thirty male (mean age, 16.6 ± 1.2 years; mean height, 1.77 ± 0.06 m; mean weight, 73.4 ± 12.2 kg) and 35 female (mean age, 16.2 ± 1.3 years; mean height, 1.66 ± 0.05 m; mean weight, 61.2 ± 6.4 kg) players volunteered to participate in this study during the 2014 and 2015 lacrosse seasons. Participants were instrumented with GForceTracker (GFT; boys) and X-Patch sensors (girls). Simultaneous game video was recorded by a trained videographer using a single camera located at the highest midfield location. One-third of the field was framed and panned to follow the ball during games. Videographic and accelerometer data were time synchronized. Head impact counts were compared with video recordings and were deemed valid if (1) the linear acceleration was ≥20 g, (2) the player was identified on the field, (3) the player was in camera view, and (4) the head impact mechanism could be clearly identified. Descriptive statistics of peak linear acceleration (PLA) and peak rotational velocity (PRV) for all verified head impacts ≥20 g were calculated. RESULTS: For the boys, a total recorded 1063 impacts (2014: n = 545; 2015: n = 518) were logged by the GFT between game start and end times (mean PLA, 46 ± 31 g; mean PRV, 1093 ± 661 deg/s) during 368 player-games. Of these impacts, 690 were verified via video analysis (65%; mean PLA, 48 ± 34 g; mean PRV, 1242 ± 617 deg/s). The X-Patch sensors, worn by the girls, recorded a total 180 impacts during the course of the games, and 58 (2014: n = 33; 2015: n = 25) were verified via video analysis (32%; mean PLA, 39 ± 21 g; mean PRV, 1664 ± 619 rad/s). CONCLUSION: The current data indicate that existing wearable sensor technologies may substantially overestimate head impact events. Further, while the wearable sensors always estimated a head impact location, only 48% of the impacts were a result of direct contact to the head as characterized on video. Using wearable sensors and video to verify head impacts may decrease the inclusion of false-positive impacts during game activity in the analysis. SN - 1552-3365 UR - https://www.unboundmedicine.com/medline/citation/28541813/Video_Analysis_Verification_of_Head_Impact_Events_Measured_by_Wearable_Sensors_ L2 - http://journals.sagepub.com/doi/full/10.1177/0363546517706703?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub=pubmed DB - PRIME DP - Unbound Medicine ER -