Tags

Type your tag names separated by a space and hit enter

Exotic QTL improve grain quality in the tri-parental wheat population SW84.
PLoS One. 2017; 12(7):e0179851.Plos

Abstract

DEVELOPING THE TRI-PARENTAL EXOTIC WHEAT POPULATION SW84

Genetic diversity of cultivated wheat was markedly reduced, first, during domestication and, second, since the onset of modern elite breeding. There is an increasing demand for utilizing genetic resources to increase genetic diversity and, simultaneously, to improve agronomic performance of cultivated wheat. To locate favorable effects of exotic wheat alleles, we developed the tri-parental wheat population SW84. The population was derived from crossing the hexaploid spring wheat cultivars Triso and Devon with one synthetic exotic donor accession, Syn084L, followed by two rounds of backcrossing and three rounds of selfing. SW84 consists of 359 BC2F4 lines, split into two families, D84 (Devon*Syn084L) and T84 (Triso*Syn084L).

STUDYING THE GENETIC CONTROL OF GRAIN QUALITY IN SW84

As a case study, grain quality of SW84 was studied in replicated field trials. Transgressive segregation was observed for all studied grain quality traits by evaluating SW84 for two years at two locations under low and high nitrogen supply. Subsequently, a genome-wide association study (GWAS) was carried out based on genomic data derived from a 90k Infinium iSELECT single nucleotide polymorphism (SNP) array. In total, GWAS yielded 37 marker-trait associations, summarized to 16 quantitative trait loci (QTL). These SNPs indicate genetic regulators of grain protein content, grain hardness, sedimentation value and sedimentation ratio. The majority of exotic QTL alleles (75%) exerted favorable effects, increasing grain protein content and sedimentation value in ten and two cases, respectively. For instance, two exotic QTL alleles were associated with a substantial increase of grain protein content and sedimentation value by 1.09% and 7.31 ml, respectively. This finding confirms the potential of exotic germplasm to improve grain quality in cultivated wheat. So far, the molecular nature of most of the detected QTL is unknown. However, two QTL correspond to known genes controlling grain quality: The major QTL on chromosome 6B, increasing grain protein content by 0.70%, on average, co-localizes with the NAM-B1 gene, known to control grain protein content as well as iron and zinc content. Likewise, the major QTL on chromosome 5D, reducing grain hardness by 8.98%, on average, co-localizes with the gene for puroindoline b (Pinb-D1) at the Ha locus. In total, 13 QTL were detected across families, whereas one and three QTL were exclusively detected in families D84 and T84, respectively. Likewise, ten QTL were detected across nitrogen treatments, whereas one and five QTL were exclusively detected under low and high N treatments, respectively. Our data indicate that most effects in SW84 act across families and N levels. Merging of data from two families or two N treatments may, thus, be considered in association studies to increase sample size and, as a result, QTL detection power.

UTILIZING FAVORABLE EXOTIC QTL ALLELES IN WHEAT BREEDING

Our study serves as a model how favorable exotic QTL alleles can be located in exotic germplasm of wheat. In future, the localized favorable exotic QTL alleles will be utilized in wheat breeding programs to simultaneously improve grain quality and selectively expand genetic diversity of the elite wheat gene pool.

Authors+Show Affiliations

Martin-Luther-University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Halle, Germany.Martin-Luther-University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Halle, Germany.University of Bonn, Institute of Crop Science and Resource Conservation, Crop Genetics and Biotechnology Unit, Katzenburgweg 5, Bonn, Germany.University of Bonn, Institute of Crop Science and Resource Conservation, Crop Genetics and Biotechnology Unit, Katzenburgweg 5, Bonn, Germany.Martin-Luther-University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Halle, Germany.

Pub Type(s)

Journal Article

Language

eng

PubMed ID

28686676

Citation

Nedelkou, Ioanna-Pavlina, et al. "Exotic QTL Improve Grain Quality in the Tri-parental Wheat Population SW84." PloS One, vol. 12, no. 7, 2017, pp. e0179851.
Nedelkou IP, Maurer A, Schubert A, et al. Exotic QTL improve grain quality in the tri-parental wheat population SW84. PLoS One. 2017;12(7):e0179851.
Nedelkou, I. P., Maurer, A., Schubert, A., Léon, J., & Pillen, K. (2017). Exotic QTL improve grain quality in the tri-parental wheat population SW84. PloS One, 12(7), e0179851. https://doi.org/10.1371/journal.pone.0179851
Nedelkou IP, et al. Exotic QTL Improve Grain Quality in the Tri-parental Wheat Population SW84. PLoS One. 2017;12(7):e0179851. PubMed PMID: 28686676.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Exotic QTL improve grain quality in the tri-parental wheat population SW84. AU - Nedelkou,Ioanna-Pavlina, AU - Maurer,Andreas, AU - Schubert,Anne, AU - Léon,Jens, AU - Pillen,Klaus, Y1 - 2017/07/07/ PY - 2017/01/31/received PY - 2017/06/05/accepted PY - 2017/7/8/entrez PY - 2017/7/8/pubmed PY - 2017/10/5/medline SP - e0179851 EP - e0179851 JF - PloS one JO - PLoS One VL - 12 IS - 7 N2 - DEVELOPING THE TRI-PARENTAL EXOTIC WHEAT POPULATION SW84: Genetic diversity of cultivated wheat was markedly reduced, first, during domestication and, second, since the onset of modern elite breeding. There is an increasing demand for utilizing genetic resources to increase genetic diversity and, simultaneously, to improve agronomic performance of cultivated wheat. To locate favorable effects of exotic wheat alleles, we developed the tri-parental wheat population SW84. The population was derived from crossing the hexaploid spring wheat cultivars Triso and Devon with one synthetic exotic donor accession, Syn084L, followed by two rounds of backcrossing and three rounds of selfing. SW84 consists of 359 BC2F4 lines, split into two families, D84 (Devon*Syn084L) and T84 (Triso*Syn084L). STUDYING THE GENETIC CONTROL OF GRAIN QUALITY IN SW84: As a case study, grain quality of SW84 was studied in replicated field trials. Transgressive segregation was observed for all studied grain quality traits by evaluating SW84 for two years at two locations under low and high nitrogen supply. Subsequently, a genome-wide association study (GWAS) was carried out based on genomic data derived from a 90k Infinium iSELECT single nucleotide polymorphism (SNP) array. In total, GWAS yielded 37 marker-trait associations, summarized to 16 quantitative trait loci (QTL). These SNPs indicate genetic regulators of grain protein content, grain hardness, sedimentation value and sedimentation ratio. The majority of exotic QTL alleles (75%) exerted favorable effects, increasing grain protein content and sedimentation value in ten and two cases, respectively. For instance, two exotic QTL alleles were associated with a substantial increase of grain protein content and sedimentation value by 1.09% and 7.31 ml, respectively. This finding confirms the potential of exotic germplasm to improve grain quality in cultivated wheat. So far, the molecular nature of most of the detected QTL is unknown. However, two QTL correspond to known genes controlling grain quality: The major QTL on chromosome 6B, increasing grain protein content by 0.70%, on average, co-localizes with the NAM-B1 gene, known to control grain protein content as well as iron and zinc content. Likewise, the major QTL on chromosome 5D, reducing grain hardness by 8.98%, on average, co-localizes with the gene for puroindoline b (Pinb-D1) at the Ha locus. In total, 13 QTL were detected across families, whereas one and three QTL were exclusively detected in families D84 and T84, respectively. Likewise, ten QTL were detected across nitrogen treatments, whereas one and five QTL were exclusively detected under low and high N treatments, respectively. Our data indicate that most effects in SW84 act across families and N levels. Merging of data from two families or two N treatments may, thus, be considered in association studies to increase sample size and, as a result, QTL detection power. UTILIZING FAVORABLE EXOTIC QTL ALLELES IN WHEAT BREEDING: Our study serves as a model how favorable exotic QTL alleles can be located in exotic germplasm of wheat. In future, the localized favorable exotic QTL alleles will be utilized in wheat breeding programs to simultaneously improve grain quality and selectively expand genetic diversity of the elite wheat gene pool. SN - 1932-6203 UR - https://www.unboundmedicine.com/medline/citation/28686676/Exotic_QTL_improve_grain_quality_in_the_tri_parental_wheat_population_SW84_ L2 - https://dx.plos.org/10.1371/journal.pone.0179851 DB - PRIME DP - Unbound Medicine ER -