Tags

Type your tag names separated by a space and hit enter

Resveratrol alleviates diabetic cardiomyopathy in rats by improving mitochondrial function through PGC-1α deacetylation.
Acta Pharmacol Sin. 2018 Jan; 39(1):59-73.AP

Abstract

Recent evidence shows that resveratrol (RSV) may ameliorate high-glucose-induced cardiac oxidative stress, mitochondrial dysfunction and myocardial fibrosis in diabetes. However, the mechanisms by which RSV regulates mitochondrial function in diabetic cardiomyopathy have not been fully elucidated. Mitochondrial dysfunction contributes to cardiac dysfunction in diabetic patients, which is associated with dysregulation of peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α). In this study we examined whether resveratrol alleviated cardiac dysfunction in diabetes by improving mitochondrial function via SIRT1-mediated PGC-1α deacetylation. T2DM was induced in rats by a high-fat diet combined with STZ injection. Diabetic rats were orally administered RSV (50 mg·kg-1·d-1) for 16 weeks. RSV administration significantly attenuated diabetes-induced cardiac dysfunction and hypertrophy evidenced by increasing ejection fraction (EF%), fraction shortening (FS%), ratio of early diastolic peak velocity (E velocity) and late diastolic peak velocity (A velocity) of the LV inflow (E/A ratio) and reducing expression levels of pro-hypertrophic markers ANP, BNP and β-MHC. Furthermore, manganese superoxide dismutase (SOD) activity, ATP content, mitochondrial DNA copy number, mitochondrial membrane potential and the expression of nuclear respiration factor (NRF) were all significantly increased in diabetic hearts by RSV administration, whereas the levels of malondialdehvde (MDA) and uncoupling protein 2 (UCP2) were significantly decreased. Moreover, RSV administration significantly activated SIRT1 expression and increased PGC-1α deacetylation. H9c2 cells cultured in a high glucose (HG, 30 mmol/L) condition were used for further analyzing the role of SIRT1/PGC-1α pathway in RSV regulation of mitochondrial function. RSV (20 μmol/L) caused similar beneficial effects in HG-treated H9c2 cells in vitro as in diabetic rats, but these protective effects were abolished by addition of a SIRT1 inhibitor sirtinol (25 μmol/L) or by SIRT1 siRNA transfection. In H9c2 cells, RSV-induced PGC-1α deacetylation was dependent on SIRT1, which was also abolished by a SIRT1 inhibitor and SIRT1 siRNA transfection. Our results demonstrate that resveratrol attenuates cardiac injury in diabetic rats through regulation of mitochondrial function, which is mediated partly through SIRT1 activation and increased PGC-1α deacetylation.

Authors+Show Affiliations

Department of Pharmacy, the Third Xiangya Hospital of Central South University, Changsha 410013, China.Department of Pharmacy, the Third Xiangya Hospital of Central South University, Changsha 410013, China.Department of Pharmacy, the Third Xiangya Hospital of Central South University, Changsha 410013, China.Department of Pharmacy, the Third Xiangya Hospital of Central South University, Changsha 410013, China.Department of Pharmacy, the Third Xiangya Hospital of Central South University, Changsha 410013, China.Department of Pharmacy, the Third Xiangya Hospital of Central South University, Changsha 410013, China.

Pub Type(s)

Journal Article

Language

eng

PubMed ID

28770830

Citation

Fang, Wei-Jin, et al. "Resveratrol Alleviates Diabetic Cardiomyopathy in Rats By Improving Mitochondrial Function Through PGC-1α Deacetylation." Acta Pharmacologica Sinica, vol. 39, no. 1, 2018, pp. 59-73.
Fang WJ, Wang CJ, He Y, et al. Resveratrol alleviates diabetic cardiomyopathy in rats by improving mitochondrial function through PGC-1α deacetylation. Acta Pharmacol Sin. 2018;39(1):59-73.
Fang, W. J., Wang, C. J., He, Y., Zhou, Y. L., Peng, X. D., & Liu, S. K. (2018). Resveratrol alleviates diabetic cardiomyopathy in rats by improving mitochondrial function through PGC-1α deacetylation. Acta Pharmacologica Sinica, 39(1), 59-73. https://doi.org/10.1038/aps.2017.50
Fang WJ, et al. Resveratrol Alleviates Diabetic Cardiomyopathy in Rats By Improving Mitochondrial Function Through PGC-1α Deacetylation. Acta Pharmacol Sin. 2018;39(1):59-73. PubMed PMID: 28770830.
* Article titles in AMA citation format should be in sentence-case
TY - JOUR T1 - Resveratrol alleviates diabetic cardiomyopathy in rats by improving mitochondrial function through PGC-1α deacetylation. AU - Fang,Wei-Jin, AU - Wang,Chun-Jiang, AU - He,Yang, AU - Zhou,Yu-Lu, AU - Peng,Xiang-Dong, AU - Liu,Shi-Kun, Y1 - 2017/08/03/ PY - 2016/12/29/received PY - 2017/03/28/accepted PY - 2017/8/5/pubmed PY - 2018/9/25/medline PY - 2017/8/4/entrez SP - 59 EP - 73 JF - Acta pharmacologica Sinica JO - Acta Pharmacol. Sin. VL - 39 IS - 1 N2 - Recent evidence shows that resveratrol (RSV) may ameliorate high-glucose-induced cardiac oxidative stress, mitochondrial dysfunction and myocardial fibrosis in diabetes. However, the mechanisms by which RSV regulates mitochondrial function in diabetic cardiomyopathy have not been fully elucidated. Mitochondrial dysfunction contributes to cardiac dysfunction in diabetic patients, which is associated with dysregulation of peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α). In this study we examined whether resveratrol alleviated cardiac dysfunction in diabetes by improving mitochondrial function via SIRT1-mediated PGC-1α deacetylation. T2DM was induced in rats by a high-fat diet combined with STZ injection. Diabetic rats were orally administered RSV (50 mg·kg-1·d-1) for 16 weeks. RSV administration significantly attenuated diabetes-induced cardiac dysfunction and hypertrophy evidenced by increasing ejection fraction (EF%), fraction shortening (FS%), ratio of early diastolic peak velocity (E velocity) and late diastolic peak velocity (A velocity) of the LV inflow (E/A ratio) and reducing expression levels of pro-hypertrophic markers ANP, BNP and β-MHC. Furthermore, manganese superoxide dismutase (SOD) activity, ATP content, mitochondrial DNA copy number, mitochondrial membrane potential and the expression of nuclear respiration factor (NRF) were all significantly increased in diabetic hearts by RSV administration, whereas the levels of malondialdehvde (MDA) and uncoupling protein 2 (UCP2) were significantly decreased. Moreover, RSV administration significantly activated SIRT1 expression and increased PGC-1α deacetylation. H9c2 cells cultured in a high glucose (HG, 30 mmol/L) condition were used for further analyzing the role of SIRT1/PGC-1α pathway in RSV regulation of mitochondrial function. RSV (20 μmol/L) caused similar beneficial effects in HG-treated H9c2 cells in vitro as in diabetic rats, but these protective effects were abolished by addition of a SIRT1 inhibitor sirtinol (25 μmol/L) or by SIRT1 siRNA transfection. In H9c2 cells, RSV-induced PGC-1α deacetylation was dependent on SIRT1, which was also abolished by a SIRT1 inhibitor and SIRT1 siRNA transfection. Our results demonstrate that resveratrol attenuates cardiac injury in diabetic rats through regulation of mitochondrial function, which is mediated partly through SIRT1 activation and increased PGC-1α deacetylation. SN - 1745-7254 UR - https://www.unboundmedicine.com/medline/citation/28770830/Resveratrol_alleviates_diabetic_cardiomyopathy_in_rats_by_improving_mitochondrial_function_through_PGC_1α_deacetylation_ L2 - http://dx.doi.org/10.1038/aps.2017.50 DB - PRIME DP - Unbound Medicine ER -